scholarly journals Mesa-structures and Focal Plane Arrays based on epitaxially grown InSb layers

2021 ◽  
Vol 9 (6) ◽  
pp. 513-522
Author(s):  
Konstantin Boltar ◽  
Alekcey Lopuhin ◽  
Pavel Vlasov ◽  
Natalya Iakovleva

Aspects of epitaxially grown indium antimonide (InSb) on InSb substrates (InSb-on-InSb) by molecular beam epitaxy (MBE) for the 2D focal plane arrays fabrication process have been described. The epitaxial growth offers possibility for complex structure production, and then such structures suppose more effective control of the thermal generation charge carriers as the detector temperature is raised above 80 K. Investigations of mid-wave infrared (MWIR) 320256 FPAs with 30 μm pitch and 640512 FPAs with 15 μm pitch based on InSb-on-InSb layers have shown high performance: the average detectivity at T = 77 K more than 21011 cmW-1Hz1/2, the average value of noise equivalent temperature difference (NETD) with a cold aperture of 60o at T = 77K was in the range of 10–20 mK. High quality thermal imaging images were obtained in real time mode.

2006 ◽  
Vol 14 (1) ◽  
Author(s):  
R. Rehm ◽  
M. Walther ◽  
J. Schmitz ◽  
J. Fleißner ◽  
F. Fuchs ◽  
...  

AbstractThe first fully operational mid-IR (3–5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized. We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency. Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays after implementing this design improvement.


2015 ◽  
Vol 9 (1) ◽  
pp. 170-174 ◽  
Author(s):  
Xiaoling Zhang ◽  
Qingduan Meng ◽  
Liwen Zhang

The square checkerboard buckling deformation appearing in indium antimonide infrared focal-plane arrays (InSb IRFPAs) subjected to the thermal shock tests, results in the fracturing of the InSb chip, which restricts its final yield. In light of the proposed three-dimensional modeling, we proposed the method of thinning a silicon readout integrated circuit (ROIC) to level the uneven top surface of InSb IRFPAs. Simulation results show that when the silicon ROIC is thinned from 300 μm to 20 μm, the maximal displacement in the InSb IRFPAs linearly decreases from 7.115 μm to 0.670 μm in the upward direction, and also decreases linearly from 14.013 μm to 1.612 μm in the downward direction. Once the thickness of the silicon ROIC is less than 50 μm, the square checkerboard buckling deformation distribution presenting in the thicker InSb IRFPAs disappears, and the top surface of the InSb IRFPAs becomes flat. All these findings imply that the thickness of the silicon ROIC determines the degree of deformation in the InSb IRFPAs under a thermal shock test, that the method of thinning a silicon ROIC is suitable for decreasing the fracture probability of the InSb chip, and that this approach improves the reliability of InSb IRFPAs.


2009 ◽  
Author(s):  
Robert Rehm ◽  
Martin Walther ◽  
Johannes Schmitz ◽  
Frank Rutz ◽  
Joachim Fleissner ◽  
...  

2005 ◽  
Author(s):  
Robert Rehm ◽  
Martin Walther ◽  
Johannes Schmitz ◽  
Joachim Fleißner ◽  
Frank Fuchs ◽  
...  

1996 ◽  
Vol 450 ◽  
Author(s):  
E. Michel ◽  
H. Mohseni ◽  
J. Wojkowski ◽  
J. Sandven ◽  
J. Xu ◽  
...  

ABSTRACTIn this paper, we report on the growth and fabrication of InSb detectors and Focal Plane Arrays (FPA's) on (100) Si, Al203, and (100) and (111) GaAs substrates for infrared (IR) imaging. Several advantages result from using GaAs, Si, or Al203. First, InSb FPA's on these materials do not require thinning as with detectors fabricated from bulk InSb. In addition, these substrates are available in larger sizes, are semi-insulating (GaAs and sapphire), and are less expensive than InSb.Optimum growth conditions have been determined and discrete devices have been fabricated on each substrate material. The structural, electrical, and optical properties were verified using x-ray, Hall, photoresponse, and photoluminescence (PL) measurements. Measured x-ray Full Widths at Half Maximum (FWHM) were as low as 55 and 100 arcsec for InSb epilayers on GaAs and Si, respectively. Hall mobilities were as high as 128,000, 95,000 and 72,000 cm2/V-sec at 200 K, 77 K, and room temperature, respectively. In addition, 77 K PL linewidths were as low as 18, 20, and 30 meV on GaAs, Si, and sapphire substrates respectively, well below the 48 meV value previously reported in the literature.In collaboration with Lockheed Martin Fairchild Systems (LMFS), IR thermal imaging has been obtained from InSb FPA's on GaAs and Si substrates. This is the first successful IR thermal imaging from heteroepitaxially grown InSb. Because of the high quality substrates, larger areas, and higher yields, this technology is very promising for challenging traditional InSb FPA hybrid technology.


2017 ◽  
Vol 80 ◽  
pp. 112-119 ◽  
Author(s):  
Xue Li ◽  
Haimei Gong ◽  
Jiaxiong Fang ◽  
Xiumei shao ◽  
Hengjing Tang ◽  
...  

1990 ◽  
Vol 216 ◽  
Author(s):  
S.M. Johnson ◽  
J.B. James ◽  
W.L. Ahlgren ◽  
W.J. Hamilton ◽  
M. Ray ◽  
...  

ABSTRACTThe structural properties of LPE-grown HgCdTe on heteroepitaxial MOCVD-grown CdZnTe/GaAs/Si substrates were evaluated using high-resolution x-ray diffraction techniques and TEM. Large tilts {up to 4°} between CdZnTe layers and GaAs/Si substrates are a general characteristic of this heteroepitaxial system and are are attributed to the interaction of closely spaced misfit dislocations that arrange to form a tilt boundary. Either {112}CdTe or {552}CdTe can be grown on {112}GaAs/Si; the {552} was shown to result from a first-order twinning operation of {112}. Lamnella {111} microtwins in {111}CdZnTe/{100}GaAs/Si substrates, measured by x-ray techniques, are not readily propagated into the LPE-grown HgCdTe layer. The x-ray FWHM of the LPE HgCdTe is typically at least a factor of two lower than that of the Si-based substrate from annealing and due to the increased thickness of the layer; both mechanisms promote dislocation interaction and annihilation. High performance MWIR and LWIR HgCdTe 128×128 hybrid focal plane arrays were fabricated on these Si-based substrates. An array average of ROAj = 17.8 ohmcm2 for a cutoff wavelength of 10.8 μm at 78K was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document