scholarly journals Determination of the heterotrophic and autotrophic active biomass during activated sludge respirometric batch assays using molecular techniques

2008 ◽  
Author(s):  
◽  
Arshad Ismail

Activated sludge models now in use worldwide for the design and operation of treatment systems use hypothetical concentrations of active organisms. In order to validate and calibrate model outputs, concentrations and activities of organisms responsible for nitrification and denitrification need to be reflected by actual measurements. This research has been initiated by the observation of an increasing gap of suitable techniques that exist in the direct measurement and separation of active biomass components, responsible for COD removal and denitrification.

2011 ◽  
Vol 281 ◽  
pp. 174-178 ◽  
Author(s):  
Jian Hui Wang ◽  
Jun Yin ◽  
Wei Hua Song ◽  
Ying Zi Lin ◽  
Xiao Lin Yu

Changing rule and activity status of biological activity of activated sludge in SBR process were studied by the determination of TTC-ETS activity. The results indicate that TTC-ETS activity can reflect effectively the biochemical reaction course of SBR process. Biological activity of organic matter biodegradation, nitrification and denitrification course in SBR process is reduced in order. Operational conditions cannot influence the changing rule of TTC-ETS activity, but the time of the appearance of break points marking different reaction course in profile and the average biological activity are influenced.


2017 ◽  
Vol 11 (4) ◽  
pp. 489-500 ◽  
Author(s):  
Hana Benaliouche ◽  
Djamal Abdessemed ◽  
Geoffroy Lesage ◽  
Marc Heran

2016 ◽  
Vol 75 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Michael Friedrich ◽  
Jose Jimenez ◽  
Amy Pruden ◽  
Jennifer H. Miller ◽  
Jacob Metch ◽  
...  

Growth kinetics in activated sludge modelling (ASM) are typically assumed to be the result of intrinsic growth and decay properties and thus process parameters are deemed to be constant. The activity change in a microbial population is expressed in terms of variance of the active biomass fraction and not actual shifts in bacterial cellular activities. This approach is limited, in that it does not recognise the reality that active biomass is highly physiologically adaptive. Here, a strong correlation between maximum specific growth rate (μmax) and decay rate (be) of ordinary heterotrophic organisms was revealed in both low solids retention times (SRT) and high SRT activated sludge systems. This relationship is indicative of physiological adaptation either for growth (high μmax and be) or survival optimization (low μmax and be). Further, the nitrifier decay process was investigated using molecular techniques to measure decay rates of ammonia oxidizing bacteria and nitrite oxidizing bacteria over a range of temperatures. This approach revealed decay rates 10–12% lower than values previously accepted and used in ASM. These findings highlight potential benefits of incorporating physiological adaptation of heterotrophic and nitrifying populations in future ASM.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Young H. Yoon ◽  
Jae R. Park ◽  
Sang W. Ahn ◽  
Kwang B. Ko ◽  
Kyung J. Min ◽  
...  

Hybrid Activated Sludge Process (HASP) with IMET was developed and applied to an activated sludge process for the advanced nutrient treatment in Korea. The characteristics of nitrogen removal from the HASP were investigated through a kinetic study by batch-type experiment. Online DB analysis produced from the IMET was conducted for the nutrient removal performance in the field demonstration plant treating 10,000 m3/day in G city of Korea. In this paper, we aimed to determine the effect of increasing NHM4+-N load on the specific nitrification rate (SNR) and the specific denitrification rate (SDNR) through a batch-type experiment, and to estimate the net reaction time for the phase-transfer rate using online DB analysis in the HASP operation. Experimental results include: (1) both the nitrification and denitrification followed first-order kinetics; (2) the maximum SNR and SDNR were 4.0301 mgN/gVSS·hr and 2.785 mgN/gVSS·hr, respectively; (3) comparison of reaction rates between nitrification and denitrification from the non-linear regression analysis found that nitrification rate was higher than denitrification.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1503-1507 ◽  
Author(s):  
L. M. Triet ◽  
N. T. Viet ◽  
T. V. Thinh ◽  
H. D. Cuong ◽  
J. C. L. van Buuren

The effluent from activated sludge treatment of petroleum wastewater was treated with the aid of a ponding system using aquatic plants (Water Hyacinth, Chlorella, Reed). A good result was obtained in this study. Pilot pond system shows that the purification efficiency depends on the residence time of about 14 days. The petroleum removal waa 97-98 %, the COD removal was from 88-93 %. The dissolved oxygen amount (with Chlorella) increased from 0.7 mg/l to 9.8 mg/l and the pH increased from 6.9 to 8-8.6. The application of 3 step biological pond with the use of Water Hyacinth, Chlorella, Reeds for post treatment of petroleum wastewater is appropriate in Vietnam.


1987 ◽  
Vol 19 (12) ◽  
pp. 79-83
Author(s):  
K. Bartoszewski ◽  
A. Bilyk

Rettery wastewaters were treated in anaerobic and aerobic ponds. Anaerobic treatment yielded efficiencies of BOD5 and COD removal as low as 20%. The treatment process conducted under aerobic conditions in aerated and stabilizing ponds arranged in series took from 18 to 20 days and gave efficiencies of BOD5 and COD removal amounting to 90%. The experimental results were interpreted by virtue of the Eckenfelder equation. Excess activated sludge was subjected to aerobic stabilization in a separate tank. A new technology was suggested for the existing obsolete industrial treatment plant.


1996 ◽  
Vol 33 (1) ◽  
pp. 311-323 ◽  
Author(s):  
A. Witteborg ◽  
A. van der Last ◽  
R. Hamming ◽  
I. Hemmers

A method is presented for determining influent readily biodegradable substrate concentration (SS). The method is based on three different respiration rates, which can be measured with a continuous respiration meter which is operated in a cyclic way. Within the respiration meter nitrification is inhibited through the addition of ATU. Simulations were used to develop the respirometry set-up and decide upon the experimental design. The method was tested as part of a large measurement programme executed at a full-scale plant. The proposed respirometry set-up has been shown to be suitable for a semi-on-line determination of an influent SS which is fully based on the IAWQ #1 vision of the activated sludge process. The YH and the KS play a major role in the principle, and should be measured directly from the process.


1994 ◽  
Vol 30 (11) ◽  
pp. 255-261 ◽  
Author(s):  
Barth F. Smets ◽  
Timothy G. Ellis ◽  
Stephanie Brau ◽  
Richard W. Sanders ◽  
C. P. Leslie Grady

This study quantified the kinetic differences in microbial communities isolated from completely mixed activated sludge (CMAS) systems that were operated either with or without an aerobic selector preceding the main reactor. A new respirometric method was employed that allowed the determination of biodegradation kinetics from single oxygen consumption curves, thereby minimizing physiological changes to the examined communities during the assay. Results indicated that increased values for Ks and μmax for acetate, phenol, and 4-chlorophenol degradation were measured in the CMAS system operated with a selector. The biomass yields on acetate, phenol, and 4-chlorophenol were very similar in both systems. These findings indicate that the operation of CMAS systems with aerobic selectors may result in the selection for degrading populations with higher Ks and μmax values for both biogenic and xenobiotic organic compounds, and that substrate storage in the selector only partially contributes to increased substrate removal rates.


Sign in / Sign up

Export Citation Format

Share Document