scholarly journals Over-Expression, Purification, and Characterization of Plant LeGST01, the Mammalian GST-Omega Homolog that Interacts with LeTPX1 from a Tomato cDNA Library

2021 ◽  
pp. 730-740
Author(s):  
Firas Fohely ◽  
Khaled Sabarna Sabarna

The study focuses on an in vivo GST- omega homologue (pCRT7/TPxII intB4) over-expression, purification and characterization. Experiments purport to characterize the antioxidant activity of the LeTPx1, the interacting glutathione S-transferases BI-GST/GPx, LeGST-T1, T2, T3, T4, T5 and the mammalian inhibitor of apoptosis Bcl-2. Upon specific expression, the proteins exerted, differential protective effects in yeast cells treated with lethal doses of the prooxidants hydrogen peroxide, t-butyl hydroperoxide, and cumene hydroperoxide. The antioxidant activity of LeTPx1 was highest against the cumene hydroperoxide. The overexpressing GST (omega) homologue TPxintB4 (Baier and Dietz, 1999) which share a considerable homology of the mammalian GST-omega1. In conclusion, the work shows that yeast parental strains are extremely sensitive to very low concentrations (0.2mM) of Cumenehydroperoxide. However, after applying the different antioxidants; it appears that the smallest concentrations t to be tolerated. 

2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2018 ◽  
Vol 1 ◽  
Author(s):  
Kazuo Miyashita ◽  
Masashi Hosokawa

Marine organisms produce a variety of carotenoids with unique functional groups such as allene, acetylene, acetyl, and hydroxymethyl. Astaxanthin and fucoxanthin are representative marine carotenoids on which numerous studies have been performed. Due to the characteristic conjugated polyene chain and terminal ring structures, both carotenoids can act as strong antioxidants. Major nutritional effects of astaxanthin, such as cardio-, skin-, and ocular-protective effects, are based on its in vivo antioxidant activity. However, the antioxidant activity of fucoxanthin is not largely involved in its characteristic nutritional activity and anti-obesity and anti-diabetic effects. The major molecular mechanisms of both effects involve modulating the expression of related genes and proteins by fucoxanthin metabolites.


2016 ◽  
Vol 66 (4) ◽  
pp. 497-508
Author(s):  
P. Milena Krstić ◽  
Z. Sunčica Borozan ◽  
P. Sofija Sovilj ◽  
R. Sanja Grgurić-Šipka ◽  
M. Jelena Oljarević

Abstract The purpose of the present study was to investigate and compare the effects of two ruthenium complexes with trifluoperazine on acethylcholinesterase enzyme activity and lactate dehydrogenase levels in vivo under physiological conditions in rats blood. Complexes 1 and 2 showed positive effects on acethylcholinesterase at all doses and did not disturb its normal activity. Total LDH activity was inhibited in the presence of both complexes, but Ru(II) complexes showed different effects on the activity of LDH isoenzymes. The activities of LDH1 and LDH2 isoenzymes were decreased in all applied doses of the complex 2, while the activity of LDH2 reduced using complex 1 in the same doses. Results of the present study suggest the neuro- and cardio protective potential of oral administration of complexes 1 and 2, as non-toxic compounds under physiological conditions. These protective effects are the result of their potent antioxidant activity.


1995 ◽  
Vol 128 (3) ◽  
pp. 383-392 ◽  
Author(s):  
B Drees ◽  
C Brown ◽  
B G Barrell ◽  
A Bretscher

Sequence analysis of chromosome IX of Saccharomyces cerevisiae revealed an open reading frame of 166 residues, designated TPM2, having 64.5% sequence identity to TPM1, that encodes the major form of tropomyosin in yeast. Purification and characterization of Tpm2p revealed a protein with the characteristics of a bona fide tropomyosin; it is present in vivo at about one sixth the abundance of Tpm1p. Biochemical and sequence analysis indicates that Tpm2p spans four actin monomers along a filament, whereas Tpmlp spans five. Despite its shorter length, Tpm2p can compete with Tpm1p for binding to F-actin. Over-expression of Tpm2p in vivo alters the axial budding of haploids to a bipolar pattern, and this can be partially suppressed by co-over-expression of Tpm1p. This suggests distinct functions for the two tropomyosins, and indicates that the ratio between them is important for correct morphogenesis. Loss of Tpm2p has no detectable phenotype in otherwise wild type cells, but is lethal in combination with tpm1 delta. Over-expression of Tpm2p does not suppress the growth or cell surface targeting defects associated with tpm1 delta, so the two tropomyosins must perform an essential function, yet are not functionally interchangeable. S. cerevisiae therefore provides a simple system for the study of two tropomyosins having distinct yet overlapping functions.


2019 ◽  
Vol 52 (1) ◽  
pp. 26-37
Author(s):  
Kamelia Saremi ◽  
Sima Kianpour Rad ◽  
Maryam Khalilzadeh ◽  
Jamal Hussaini ◽  
Nazia Abdul Majid

Abstract Chlorine is shown to possess anti-gastric ulcer activity, since it can inactivate Helicobacter pylori, which is regarded as one of the most common risk factors for causing gastric problems. In the current study, the gastroprotective property of a novel dichloro-substituted Schiff base complex, 2, 2′- [−1, 2-cyclohexanediylbis(nitriloethylidyne)] bis(4-chlorophenol) (CNCP), against alcohol-induced gastric lesion in SD rats was assessed. SD rats were divided into four groups, i.e. normal, ulcer control, testing, and reference groups. Ulcer area, gastric wall mucus, and also gastric acidity of the animal stomachs were measured. In addition, antioxidant activity of CNCP was evaluated and its safe dose was identified. Immunohistochemistry staining was also carried to evaluate two important proteins, i.e. Bcl2-associated X protein (Bax) and heat shock protein 70 (HSP70). Moreover, the activities of super oxide dismutase and catalase, as well as the levels of prostaglandin E2 (PGE2) and malondialdehyde (MDA) were also measured. Antioxidant activity of CNCP was approved via the aforementioned experiments. Histological evaluations showed that the compound possesses stomach epithelial defense activity. Additionally, periodic acid-Schiff staining exhibited over-expression of HSP70 and down-expression of Bax protein in the CNCP-treated rats. Moreover, CNCP caused deceased MDA level and elevated PGE2 level, and at the same time increased the activities of the two enzymes.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Martina Höferl ◽  
Ivanka Stoilova ◽  
Juergen Wanner ◽  
Erich Schmidt ◽  
Leopold Jirovetz ◽  
...  

In the present study, the chemical composition and antioxidant potential of an essential oil of ginger rhizomes from Ecuador was elucidated. The analysis of the essential oil by GC/FID/MS resulted in identification of 71 compounds, of which the main are citral (geranial 10.5% and neral 9.1%), α-zingiberene (17.4%), camphene (7.8%), α-farnesene (6.8%) and β-sesquiphellandrene (6.7%). The in vitro antioxidant activity of the essential oil expressed by IC50 in descending order is: hydroxyl radical (OH•) scavenging (0.0065 μg/mL) > chelating capacity (0.822 μg/mL) > 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+) scavenging (3.94 μg/mL) > xanthine oxidase inhibition (138.0 μg/mL) > oxygen radical (CV) scavenging (404.0 μg/mL) > 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging (675 μg/mL). Lipid peroxidation inhibition of the essential oil was less efficient than butylhydroxy-toluol (BHT) in both stages, i.e. hydroperoxide and malondialdehyde formation. In vivo studies in Saccharomyces cerevisiae demonstrated a significant dose-dependent increase in antioxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), blocking the oxidation processes in yeast cells. Moreover, ginger essential oil in concentrations of 1.6 mg/mL increases the viability of cells to oxidative stress induced by H2O2.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Upendarrao Golla ◽  
Solomon Sunder Raj Bhimathati

Desmostachya bipinnataStapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract ofDesmostachya bipinnatabothin vitroandin vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50value of264.18±3.47 μg/mL in H2O2scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton’s reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activityin vivoby protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed thatDesmostachya bipinnatais a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.


Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
A Vora ◽  
V Londhe ◽  
N Pandita

2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Sign in / Sign up

Export Citation Format

Share Document