scholarly journals Loss of stability of thin-walled structures

Author(s):  
S.Kh. Dostanova ◽  
◽  
K. Sanalbay ◽  
K.E. Tokpanova ◽  
O.E. Tulegenova ◽  
...  

The stability of a flat reinforced concrete shell is considered. A variational method is used to solve a nonlinear problem. The values of the upper and lower critical loads are given depending on the design features and dimensions of the coating shell.

2010 ◽  
Author(s):  
A. Guran ◽  
L. Lebedev ◽  
Michail D. Todorov ◽  
Christo I. Christov

2018 ◽  
Vol 149 ◽  
pp. 01089
Author(s):  
Mahi Imene ◽  
Djafour Naoual ◽  
Djafour Mustapha

Thin-walled structures have an increasingly large and growing field of application in the engineering sector, the goal behind using this type of structure is efficiency in terms of resistance and cost, however the stability of its components (the thin walls) remains the first aspect of the behavior, and a primordial factor in the design process. The hot rolled sections are known by a consequent post-buckling reserve, cold-formed steel sections which are thin-walled elements also benefit, in this case, it seems essential to take into account the favorable effects of this reserve in to the verification procedure of the resistance with respect to the three modes of failures of this type of structure. The design method that takes into account this reserve of resistance is inevitably the effective width method. The direct strength method has been developed to improve the speed and efficiency of the design of thin-walled profiles. The latter mainly uses the buckling loads (for Local, Distortional and Global mode) obtained from a numerical analysis and the resistance curves calibrated experimentally to predict the ultimate load of the profile. Among those, the behavior of a set of Cshaped profiles (highly industrialized) is studied, this type of section is assumed to be very prone to modes of local and distortional instability. The outcome of this investigation revealed very relevant conclusions both scientifically and practically.


2017 ◽  
Vol 84 (2) ◽  
pp. 58-64 ◽  
Author(s):  
P. Różyło

Purpose: The aim of the work was to analyse the critical state of thin-walled composite profiles with top-hat cross section under axial compression. Design/methodology/approach: The purpose of the work was achieved by using known approximation methods in experimental and finite element methods for numerical simulations. The scope of work included an analysis of the behavior of thin-walled composite structures in critical state with respect to numerical studies verified experimentally. Findings: In the presented work were determined the values of critical loads related to the loss of stability of the structures by using well-known approximation methods and computer simulations (FEM analysis). Research limitations/implications: The research presented in the paper is about the potential possibility of determining the values of critical loads equivalent to loss of stability of thin-walled composite structures and the future possibility of analyzing limit states related to loss of load capacity. Practical implications: The practical approach in the actual application of the described specimen and methodology of study is related to the necessity of carrying out of strength analyzes, allowing for a precise assessment of the loads upon which the loss of stability (bifurcation) occurs. Originality/value: The originality of the research is closely associated with used the thinwalled composite profile with top-hat cross-section, which is commonly used in the fuselage of passenger airplane. The methodology of simultaneous confrontation of the obtained results of critical loads by using approximation methods and using the linear eigenvalue solution in numerical analysis demonstrates the originality of the research character. Presented results and the methodology are intended for researchers, who are concerned with the topic of loss of stability of thin-walled composite structures.


Author(s):  
Hamid Naseri ◽  
Hossein Showkati ◽  
Tadeh Zirakian ◽  
Sina Nasernia

Local support settlement is a typical differential settlement which may take place under steel storage tanks and can adversely affect the stability performance of such thin-walled structures. Considering the practical applications of the thin-walled steel storage tanks in industry, proper treatment of this problem is essential to ensure the high structural performance of such members which albeit requires detailed investigations. On this basis, this study investigates the effects of the local support settlement on the buckling stability of two tanks without and with a top stiffening ring through the experimental and numerical approaches. The considered tanks are small-scale models with the height-to-radius and radius-to-thickness (slenderness) ratios of 1.0 and 834, respectively. Both experimental and numerical results show that the behavior of the tank under the local support settlement is nonlinear. Moreover, the effectiveness of the top stiffening ring in limiting the buckling deformation and improving the buckling performance of the tank is demonstrated in this study.


2007 ◽  
Vol 9 ◽  
pp. 41-50 ◽  
Author(s):  
Roman Bogacz ◽  
Kurt Frischmuth ◽  
Krzysztof Lisowski

We discuss the dynamic behavior of stepped columns subjected to follower forces. In particular, limit cases which correspond to columns with hinges or cracks and concentrated lateral supports are studied for the stability limit. Typically, solutions suffer jumps in certain derivatives, which have to satisfy compatibility conditions. The influence of these interface conditions on the critical force is investigated. The aim is to optimize the location of such singularities and thus to obtain maximum critical loads, respectively worst case estimates for the loss of stability.


2012 ◽  
Vol 223 (8) ◽  
pp. 1621-1631 ◽  
Author(s):  
C. Bilik ◽  
D. H. Pahr ◽  
F. G. Rammerstorfer

2017 ◽  
Vol 22 (2) ◽  
pp. 393-402 ◽  
Author(s):  
P. Różyło ◽  
P. Wysmulski ◽  
K. Falkowicz

Abstract Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.


2000 ◽  
Vol 6 (2) ◽  
pp. 69-75
Author(s):  
Michail Samofalov ◽  
Rimantas Kačianauskas

Thin-walled structures are widely used in building construction. Stability analysis [1–10] is of major importance to the design of thin-walled structures. This paper deals with the stability analysis of the thin-walled tapered column [11–18]. The aim is to investigate the influence of variation of the web height on the stability of column and combined action of axial force and plane bending moment. Critical state is defined by stability surface obtained by numerical experiments using the finite element method. Mathematical model of the linearised stability problem is presented as algebraic eigenvalue problem (1), where eigenvalues express the critical loading factor (2). Analytical solutions are known for particular cases of separate loading (4), (5). In this paper, the column with variable I-section is presented as assemblage of beam elements with constant section. Thin-walled beam element has 14 degrees of freedom (Fig 1), including linear displacements, rotations and warping displacements. Variation of cross-section of the column (Fig 2) is defined by relative height of web alb, were a and b are the height at the ends of column. Critical state is described by stability surface obtained using numerical experiments. Stability surface presents in the space of relative variation of height a/b, relative length and relative critical force and bending moment . Variation of section influences the critical bending moment only. The influence of finite element number on the with different relative height of web a/b is investigated numerically (Fig 3), and its variation of stability surface is presented in Fig 4. The numerical results show that variation of critical moment to relative web height a/b is linear (Fig 5). The shapes of buckling modes are presented in Fig 6. Variation of stability surface to relative length (6) is presented in Figs 7 and 8 and expressed by the simple expression (6) constructed on the basis of numerical experiments. Finally, the stability model (1) is compared with nonlinear calculations performed using program ANSYS [19] and shell finite elements (Figs 9 and 10).


Sign in / Sign up

Export Citation Format

Share Document