scholarly journals Protecting a displaced species in an altered river: a case study of the endangered Sacramento River winter-run Chinook Salmon

2021 ◽  
pp. 172-188
Author(s):  
Erica M. Meyers

Endangered Sacramento River winter-run Chinook Salmon (Oncorhynchus tshawytscha) exist as a single population that spawns in the Sacramento River downstream of Shasta Dam near Redding, CA. Displaced from their historical habitat after dam construction circa 1940, their survival depends on cold water released from Shasta Reservoir. Managing and recovering the species is further complicated by their anadromous life history, habitat loss and degradation, largescale water supply management, and climate change. The California Department of Fish and Wildlife and other resource agencies coordinate closely to protect the species from extinction, confronting challenges with collaborative restoration and science-driven management. As climate change brings more frequent droughts, warmer weather, and increased variability in precipitation, Sacramento River winter-run Chinook Salmon recovery will require greater collaboration and a shift to more holistic restoration actions that promote and maintain the diversity and resilience of the species and its habitats.

2020 ◽  
Author(s):  
James J. Anderson ◽  
W. Nicholas Beer ◽  
Joshua A. Israel ◽  
Sheila Greene

AbstractAllocating reservoir flows to meet societal and ecosystem needs under increasing demands for water and increasing climatic variability presents challenges to resource managers. Often, regulated rivers have been operated to meet flow and temperature compliance points that mimic historical patterns. Because it is difficult to assess if this approach is efficient or equitable, new more process-based approaches to regulation are being advanced. This paper describes such an approach with a model of egg incubation survival of Sacramento River winter-run Chinook salmon (SRWRC, Oncorhynchus tshawytscha). Thermal mortality only occurs in a critical window around egg hatching when the embryo is most sensitive to temperature stress. The duration of the critical window has significant implications for Shasta Reservoir operations that are designed to control temperature during SRWRC incubation. Previous operations sought to maintain a low temperature over the entire incubation period. However, model analysis suggests that targeting cold water directly to the critical egg hatching stage provides higher survival while requiring less cold water resources. The calibrated model is publicly accessible through a web interface connected to real-time river and fish databases and a river temperature forecast model. The system is an example of the next step of river management that integrates databases with hydrological and process-based biological models for real-time analysis and for forecasting effects of river operations on the environment.


1997 ◽  
Vol 54 (6) ◽  
pp. 1246-1254 ◽  
Author(s):  
M J Unwin

Fry-to-adult survival rates for chinook salmon (Oncorhynchus tshawytscha) from Glenariffe Stream, a tributary of the Rakaia River, New Zealand, were estimated for fish of both natural and hatchery origin. Survival of naturally produced fry, most of which leave Glenariffe Stream within 24 h of emergence, averaged 0.079% (range 0.013-1.17%). For hatchery fish released at 8-12 months, standardised to a mean weight of 38 g, survival covaried with weight at release consistently across all brood years and averaged 0.34% (range 0.008-3.28%). Survival rates for hatchery fish were four times higher than for naturally produced fry, but were extremely poor relative to their size at release. Survival rates for fish of natural and hatchery origin were positively correlated, suggesting that recruitment of both stocks is primarily controlled by common influences within the marine environment, probably during the first winter at sea. Stock-recruitment analysis for the natural population showed little tendency for recruitment to increase with stock size, suggesting that marine survival rates may be density dependent. Although the reasons for the relatively poor survival of hatchery fish are unclear, the results provide a case study in which hatchery fish appear to have a poorer ``fitness to survive'' than their natural counterparts.


Genetics ◽  
2008 ◽  
Vol 179 (2) ◽  
pp. 1113-1118 ◽  
Author(s):  
Hannah Rajasingh ◽  
Arne B. Gjuvsland ◽  
Dag Inge Våge ◽  
Stig W. Omholt

2018 ◽  
Vol 69 (12) ◽  
pp. 1995 ◽  
Author(s):  
George P. Naughton ◽  
Matthew L. Keefer ◽  
Tami S. Clabough ◽  
Matthew J. Knoff ◽  
Timothy J. Blubaugh ◽  
...  

Trap-and-haul is a mitigation strategy at many hydropower dams lacking upstream fish-passage facilities, and protocols are needed to maximise its effectiveness. We used biotelemetry to assess the potential benefits of releasing transported adult Chinook salmon (Oncorhynchus tshawytscha) into a cold-water reservoir v. a relatively warm-water tributary before spawning. Over 5 years, we released 160 salmon into Foster Reservoir (Oregon, USA) and another 102 into the South Santiam River near historical salmon spawning areas further upstream. In total, 70% of reservoir-released salmon entered an upriver tributary after spending a median of 3–95 days annually in the reservoir. Data recovered from 61 archival temperature loggers indicated that salmon were ~3–6°C cooler per day in the reservoir than in the river. We estimated that cumulative exposure of reservoir-released fish was reduced by 64 degree days, on average (range=–129 to 392), relative to river-released fish. Release into the reservoir was not risk free; 14% of all reservoir-released fish fell back downstream v. 1% of river-released fish. We conclude that reduced transport distance, reduced thermal exposure and potential survival benefits of releasing salmon into reservoirs should be weighed against risks of factors such as fallback and homing errors.


1988 ◽  
Vol 23 (1) ◽  
pp. 100-113 ◽  
Author(s):  
I. H. Rogers ◽  
J. A. Servizi ◽  
C. D. Levings

Abstract Juvenile chinook salmon were sampled from August 1986 to March 1987 at stations near Prince George and Quesnel, influenced by sewage and pulp mill discharges. Maximum densities of 0.2 fish·mࢤ2 were recorded. Salmon were collected at reference sites in November 1986 and at Agassiz in April 1987. Fingerling chinook were exposed at 0.7°C to a commercial wood preservative containing 2,3,4,6 - tetrachlorophenol (TeCP) and pentachlorophenol (PCP) in the laboratory to simulate winter conditions in the upper Fraser River. Fish exposed for 62 days to 2 ug·Lࢤ1 contained a mean of 224 ng·gࢤ1 TeCP and 431 ng·gࢤ1 PCP. Chlorophenol uptake in feral fish was low. However, 3,4,5-trichloro-guaiacol levels to 304 ng·gࢤ1 and tetrachloroguaiacol values to 136 ng·gࢤ1 were measured in March. Fish from Agassiz, 518 km downstream of Quesnel, also contained these two substances. Thus chinook salmon can bioconcentrate persistent chlorophenols and chloroguaiacols directly from cold water (< 1°C). The biological consequences are uncertain.


Author(s):  
Colin L. Nicol ◽  
Jeffrey C. Jorgensen ◽  
Caleb B. Fogel ◽  
Britta Timpane-Padgham ◽  
Timothy J. Beechie

In the Pacific Northwest, USA, climate change is expected to result in a shift in average hydrologic conditions and increase variability. The relative vulnerabilities to peak flow changes among salmonid species within the same basin have not been widely evaluated. We assessed the impacts of predicted increases in peak flows on four salmonid populations in the Chehalis River basin. Coupling observations of peak flows, emissions projections, and multi-stage Beverton–Holt matrix-type life cycle models, we ran 100-year simulations of spawner abundance under baseline, mid-century, and late-century climate change scenarios. Coho (Oncorhynchus kisutch) and spring Chinook salmon (Oncorhynchus tshawytscha) shared the highest projected increase in interannual variability (SD = ±15%). Spring Chinook salmon had the greatest reduction in median spawner abundance (–13% to –15%), followed by coho and fall Chinook salmon (–7% to –9%), then steelhead (Oncorhynchus mykiss) (–4%). Our results show that interspecies and life history variability within a single basin is important to consider. Species with diverse age structures are partially buffered from population variability, which may increase population resilience to climate change.


2015 ◽  
Vol 72 (11) ◽  
pp. 1749-1759 ◽  
Author(s):  
Cyril J. Michel ◽  
Arnold J. Ammann ◽  
Steven T. Lindley ◽  
Philip T. Sandstrom ◽  
Eric D. Chapman ◽  
...  

Outmigration survival of acoustic-tagged, hatchery-origin, late-fall-run Chinook salmon (Oncorhynchus tshawytscha) smolts from the Sacramento River was estimated for 5 years (2007–2011) using a receiver array spanning the entire outmigration corridor, from the upper river, through the estuary, and into the coastal ocean. The first 4 years of releases occurred during below-average river flows, while the fifth year (2011) occurred during above-average flows. In 2011, overall outmigration survival was two to five times higher than survival in the other 4 years. Regional survival estimates indicate that most of the improved survival seen in 2011 occurred in the riverine reaches of the outmigration corridor, while survival in the brackish portions of the estuary did not significantly differ among the 5 years. For the 4 low-flow years combined, survival rate in the river was lower in the less anthropogenically modified upper reaches; however, across all regions, survival rate was lowest in the brackish portion of the estuary. Even in the high-flow year, outmigration survival was substantially lower than yearling Chinook salmon populations in other large rivers. Potential drivers of these patterns are discussed, including channelization, water flow, and predation. Finally, management strategies are suggested to best exploit survival advantages described in this study.


2003 ◽  
Vol 60 (10) ◽  
pp. 1266-1280 ◽  
Author(s):  
Joseph L Ebersole ◽  
William J Liss ◽  
Christopher A Frissell

Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) in northeastern Oregon. The addition of cold water patch frequency and area as explanatory variables in salmonid habitat models indicated that doubling of cold water patch frequency was associated with increases in rainbow trout and chinook salmon abundances of 31% and 59%, respectively. Doubling of cold water patch area was associated with changes of 10% in rainbow trout abundance but was not associated with chinook abundance after accounting for other habitat factors. The physiognomy, distribution, and connectivity of cold water patches, important attributes determining the effectiveness of these habitats as thermal refuges for stream fishes, were associated with channel bedform and riparian features. Monitoring of thermal heterogeneity and salmonid populations in response to ongoing habitat restoration efforts will provide additional insights into causal relationships among these factors.


Sign in / Sign up

Export Citation Format

Share Document