scholarly journals The Massive Fluvial Channel System in The Balam Graben: New Insight and Future Expectation from Menggala Formation in The Northern Rokan Block, Central Sumatera Basin

2021 ◽  
Vol 1 (2) ◽  
pp. 103-110
Author(s):  
Iqbal Fardiansyah ◽  
◽  
Agung Wiyono ◽  
Abdullah Faisal Talib

Menggala Formation has been long recognized as high quality oil bearing sand and favorable reservoir in Central Sumatera Basin (CSB). Regionally, this formation is unique in characteristic, distribution and has not been thoroughly evaluated during early exploration and development. This paper aims to explain elaborately the new stratigraphic feature and regional paleogeography model of Menggala Formation throughout Balam grabens by integrating cores, biostratigraphy, water salinity, well log and 2D seismic image to better understand regional stratigraphic play concept. Lower Menggala Formation in the northern Rokan Block has been clearly identified as the large scale of fluvial channel system that deposited parallel with Paleogene border fault remnants during early post-rift phase (22-25 million years ago). The fluvial channel belt is characterized by 4 to 5 km width, thick multi stacking fluvial sequence in the north and gradually change into river mouth sediment in the south. These sediments accumulated in depression area and also proven as huge productive reservoir in many fields. The north-south trending channel axis and geobodies confirmed by paleo bathymetric zonation, water salinity and 2D seismic image. The new paleogeography model helps better understanding of the regional stratigraphic concept of Menggala Formation across Balam grabens. In addition, this conceptual model also leads to strengthen the future exploration and development play concept within study area in Rokan Block.

1982 ◽  
Vol 1 (18) ◽  
pp. 63
Author(s):  
Hugh Converse

Remarkable near-continuous examples of barrier beach features are found in many coastal areas, worldwide. The most notable North American examples are the margins of North America along the Atlantic and Gulf of Mexico, where barrier islands are found along more than 60 percent of the coastline. There are, in fact, 280 large-scale individual barrier features, 70 of which are highly developed and 100 more are being developed (Hobson, et al, 1980). These barriers have been built out of the enormous volumes of sediment available from the extensive watersheds of eastern and central North America and, through the ages, appear to have migrated long distances across a wide continental shelf in response to the interplay of waves and tidal currents, eustatic sea level fluctuations and sand supply. Barrier features are less in evidence on the west coast of North America though they are by no means absent. For example, along a 60-mile reach of the Oregon-Washington coast adjacent to the Columbia River mouth, impressive barrier spits have straightened the coast by blocking the bays and headlands. These are black-sand beaches, formed from the large sediment supply of the extensive inland basin of the Columbia (Bascom, 1980; Cooper, 1967), which has the 29thlargest discharge of the world's rivers (Inman and Nordstrom, 1971). The longest spit in this reach is about 19 miles long. The North Pacific coast is a high-energy wave environment, and these spits are continually shifting. Indeed, one of the most outstanding examples of continuing shore movement in North America is found at Cape Shoalwater at the north side of Willapa Bay, Washington where the inlet has migrated about 2.5 miles northward in the last 95 years across homesites, a cemetery and a lighthouse (Terich and Schwartz, 1981; US Corps of Engineers, 1971a).


2018 ◽  
pp. 1-34
Author(s):  
Andrew Jackson

One scenario put forward by researchers, political commentators and journalists for the collapse of North Korea has been a People’s Power (or popular) rebellion. This paper analyses why no popular rebellion has occurred in the DPRK under Kim Jong Un. It challenges the assumption that popular rebellion would happen because of widespread anger caused by a greater awareness of superior economic conditions outside the DPRK. Using Jack Goldstone’s theoretical expla-nations for the outbreak of popular rebellion, and comparisons with the 1989 Romanian and 2010–11 Tunisian transitions, this paper argues that marketi-zation has led to a loosening of state ideological control and to an influx of infor-mation about conditions in the outside world. However, unlike the Tunisian transitions—in which a new information context shaped by social media, the Al-Jazeera network and an experience of protest helped create a sense of pan-Arab solidarity amongst Tunisians resisting their government—there has been no similar ideology unifying North Koreans against their regime. There is evidence of discontent in market unrest in the DPRK, although protests between 2011 and the present have mostly been in defense of the right of people to support themselves through private trade. North Koreans believe this right has been guaranteed, or at least tacitly condoned, by the Kim Jong Un government. There has not been any large-scale explosion of popular anger because the state has not attempted to crush market activities outright under Kim Jong Un. There are other reasons why no popular rebellion has occurred in the North. Unlike Tunisia, the DPRK lacks a dissident political elite capable of leading an opposition movement, and unlike Romania, the DPRK authorities have shown some flexibility in their anti-dissent strategies, taking a more tolerant approach to protests against economic issues. Reduced levels of violence during periods of unrest and an effective system of information control may have helped restrict the expansion of unrest beyond rural areas.


The key aspects of the process of designing and developing an information and cartographic control tool with business analytics functions for the municipal level of urban management are considered. The review of functionality of the developed tool is given. Examples of its use for the analysis and monitoring of implementation of the program of complex development of territories are given. The importance of application of information support of management and coordination at all levels of management as an integral part of the basic model of management and coordination system of large-scale urban projects of dispersed construction is proved. Information and map-made tool with business intelligence functions was used and was highly appreciated in the preparation of information-analytical and presentation materials of the North-Eastern Administrative District of Moscow. Its use made it possible to significantly optimize the list of activities of the program of integrated development of territories, their priority and timing.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 381-385 ◽  
Author(s):  
Y. Oziransky ◽  
B. Shteinman

Data of high spatial and temporal resolution, and a special sampling program are essential for successful application of mathematical models designed to reproduce observed seasonal patterns of temperature, dissolved oxygen, nutrients, pH, and algal biomass for both vertical and longitudinal gradients in a water body. Lake Kinneret suspended solids are of great potential value for estimating transport, exposure to water body elements, and fate of many toxic substances. Therefore the distribution of admixtures in two longitudinal and five vertical segmentation schemes were examined with the two-dimensional water body quality box model “BETTER” (Bender et al, 1990). The transects were taken in the north-western part of Lake Kinneret close to the Jordan River mouth and the National Water Carrier (NWC) head pumping station. The outflow volumes were given according to regular sampling of natural speed of water outflow from different lake layers under calm conditions. Temporal distribution of mixing concentrations as well as turbulent diffusion horizontal coefficients due to the spatial distribution of turbulent scale were obtained during the model's run with the December 1991 data.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2019 ◽  
Vol 89 (11) ◽  
pp. 1109-1126
Author(s):  
Alexander R. Koch ◽  
Cari L. Johnson ◽  
Lisa Stright

ABSTRACT Spatial point-pattern analyses (PPAs) are used to quantify clustering, randomness, and uniformity of the distribution of channel belts in fluvial strata. Point patterns may reflect end-member fluvial architecture, e.g., uniform compensational stacking and avulsion-generated clustering, which may change laterally, especially at greater scales. To investigate spatial and temporal changes in fluvial systems, we performed PPA and architectural analyses on extensive outcrops of the Cretaceous John Henry Member of the Straight Cliffs Formation in southern Utah, USA. Digital outcrop models (DOMs) produced using unmanned aircraft system-based stereophotogrammetry form the basis of detailed interpretations of a 250-m-thick fluvial succession over a total outcrop length of 4.5 km. The outcrops are oriented roughly perpendicular to fluvial transport direction. This transverse cross-sectional exposure of the fluvial system allows a study of the system's variation along depositional strike. We developed a workflow that examines spatial point patterns using the quadrat method, and architectural metrics such as net sand to gross rock volume (NTG), amalgamation index, and channel-belt width and thickness within moving windows. Quadrat cell sizes that are ∼ 50% of the average channel-belt width-to-thickness ratio (16:1 aspect ratio) provide an optimized scale to investigate laterally elongate distributions of fluvial-channel-belt centroids. Large-scale quadrat point patterns were recognized using an array of four quadrat cells, each with 237× greater area than the median channel belt. Large-scale point patterns and NTG correlate negatively, which is a result of using centroid-based PPA on a dataset with disparately sized channel belts. Small-scale quadrat point patterns were recognized using an array of 16 quadrat cells, each with 21× greater area than the median channel belt. Small-scale point patterns and NTG correlate positively, and match previously observed stratigraphic trends in the fluvial John Henry Member, suggesting that these are regional trends. There are deviations from these trends in architectural statistics over small distances (hundreds of meters) which are interpreted to reflect autogenic avulsion processes. Small-scale autogenic processes result in architecture that is difficult to correlate between 1D datasets, for example when characterizing a reservoir using well logs. We show that 1D NTG provides the most accurate prediction for surrounding 2D architecture.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Hayer ◽  
Dirk Brandis ◽  
Alexander Immel ◽  
Julian Susat ◽  
Montserrat Torres-Oliva ◽  
...  

AbstractThe historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s—including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


Sign in / Sign up

Export Citation Format

Share Document