scholarly journals Increase in recoverable oil reserves based on system treatments of injection wells

2021 ◽  
Vol 6 (3) ◽  
pp. 121-129
Author(s):  
Artem V. Fomkin ◽  
Andrey M. Petrakov ◽  
Stanislav A. Zhdanov ◽  
Robert R. Rayanov ◽  
Elena N. Baykova ◽  
...  

Background. The article considers and justifies the need to take into account the indicators that characterize the amount of balance reserves involved in the development, as well as the increase in recoverable oil reserves due to EOR, when evaluating the technological efficiency of the treatment of the alignment of the pick-up profile (RUNWAY). Aim. If the increase in recoverable reserves is significantly less than production, this will lead to a loss of oil production potential. This fact is of particular importance in the conditions of the arrangement of the old squares and the presence of a developed infrastructure on them. Materials and methods. Materials were used to assess the dynamics and degree of development of oil reserves, calculations of the increase in recoverable reserves. Results. The article presents the results of the accumulated technological efficiency of work to improve oil recovery using various technologies for leveling the intake profile (runway) and non-stationary flooding at the facilities of Subsurface user in Khanty-Mansi Autonomous Area – Yugra on the basis of system-targeted impact on the reservoir. The article also presents materials on the assessment of the dynamics and degree of development of oil reserves, as well as calculations of the increase in recoverable reserves. Conclusions. Calculations based on the assessment of the increase in initial and residual recoverable oil reserves from the implementation of annual EOR programs carried out in accordance with the methodology of PJSC Gazpromneft indicate that the implementation of these programs contributes to additional involvement in the active development of previously poorly drained or non-drained oil reserves.

Author(s):  
V.V. Mukhametshin ◽  

For the conditions of an oil fields group characterized by an insufficiently high degree of oil reserves recovery, an algorithm for objects identifying using parameters characterizing the objects’ geological structure and having a predominant effect on the oil recovery factor is proposed. The proposed algorithm allows us to substantiate and use the analogy method to improve the oil production facilities management efficiency by targeted selection of the information about the objects and processes occurring in them, removing uncertainties in low density conditions, the emergence of real-time decision-making capabilities, determination of optimal ways of current problems solving, reducing the probability of erroneous decisions making, justifying the trend towards the goals achieving.


2020 ◽  
pp. 31-43
Author(s):  
T. K. Apasov ◽  
G. T. Apasov ◽  
E. E. Levitina ◽  
E. I. Mamchistova ◽  
N. V. Nazarova ◽  
...  

Despite the current political and economic situation in Russia, mining in small oil fields is important and topical issue. We have conducted a geological and field analysis of the development of one of such small oil fields from setting into operation to shut down and have identified the reasons for the low production of oil reserves and the failure to achieve the design oil recovery factor. At the same time, the field has sufficient reserves of recoverable reserves, and there is an available transport infrastructure, which proves the necessity to consider rerun it for the development. For this purpose, geological and technical actions have been developed and are being proposed for implementation to improve the efficiency of field development. These actions envisage implementation in two stages: the first with minimal costs and the second with higher costs. At the first stage, at the existing reservoir pressure, we recommend to perform forced fluid withdrawals with an increase in depression on the reservoir. At the second stage, we offer actions at a higher cost, such as hydraulic fracturing, sidetracking. As a result of the analysis, actions have been developed to increase selection from initial recoverable reserves and increase the economic efficiency when the field is rerun.


GeoArabia ◽  
2007 ◽  
Vol 12 (2) ◽  
pp. 69-94 ◽  
Author(s):  
Moujahed I. Al-Husseini

ABSTRACT The Government of Iran estimates the country’s initial-oil-in-place and condensate-in-place are about 600 and 32 billion barrels (Gb), respectively. In 2004, the official estimate of the proved remaining recoverable oil and condensate reserves was about 132.5 Gb, of which crude oil accounted for about 108 Gb. Cumulative crude oil production is expected to cross the 60 Gb mark in 2007, implying that the estimated ultimate recoverable reserves of crude oil are about 168 Gb (cumulative production plus remaining reserves) and the total recovery factor is about 28%. The main Oligocene-Miocene Asmari and Cretaceous Bangestan (Ilam and Sarvak) reservoirs contain about 43% and 25%, respectively, of the total crude oil-in-place. Recovery factors for the Asmari range between about 10–60%, and for the Bangestan between 20–30%. Between 1974 and 2004 remaining recoverable reserves have increased from about 66 to 108 Gb, while the ultimate recoverable reserves have increased from 86 to 168 Gb. In contrast to 1974 when Iran’s production peaked at 6.0 Mb/d, production in 2005 averaged about 4.1 Mb/d. The 1974 peak occurred when production from most of the giant fields was ramped-up to very high but unsustainable levels. Current plans are to increase the crude oil production rate to 4.6 Mb/d by 2009. This is a significant challenge because this production capacity has to offset a reported total annual decline rate of 300–500,000 barrels/day (Kb/d). This high decline rate is attributed to the maturity of the giant fields, many of which attained their peaks in the 1970s and have produced about half or more of their estimated ultimate recoverable reserves. Therefore to achieve the 2009 production target within the next three years, Iran has to add about 680 Kb/d of capacity per year from its developed fields (infill drilling, recompletions, enhanced and improved oil recovery), while also adding net new surface facilities and well capacity from undeveloped fields and reservoirs.


1991 ◽  
Vol 31 (1) ◽  
pp. 1 ◽  
Author(s):  
T. O'Sullivan ◽  
D.J. McGarry A.M. ◽  
A. Kamenar ◽  
R.S. Brown

The Moonie Field, located in the eastern portion of the Surat Basin and 300 km west of Brisbane, was discovered in December 1961 by Union Oil, operator of the 'UKA' joint venture consisting of Union Oil, Kern and AOG. Successful appraisal and development drilling led to the construction of the Moonie to Brisbane pipeline in 1963-64. Oil production commenced in 1964 and peaked in 1966 at a rate of 9000 BPD (1.4 ML/d). The oil is reservoired in the Precipice Sandstone and is trapped within the closure of the Moonie Anticline, located on the eastern and upthrown side of the Moonie-Goondiwindi Fault. Of the 38 wells drilled in the field to date, 32 have produced oil at economic rates. By August 1990, 22.23 MMBBL (3.5 GL) of oil had been produced from an estimated 59.1 MMBBL (9.3 GL) in place. Remaining recoverable reserves, with primary recovery, are estimated to be more than 1.5 MMBBL (0.2 GL). Enhanced oil recovery using both carbon dioxide and microbial techniques is currently being investigated by AGL Petroleum.The discovery of oil at Moonie represented the start of the commercial oil era in Australia. It provided encouragement for the petroleum exploration industry to expand the search and demonstrated that there were profits to be made from Australia's sedimentary basins. Moonie spawned a generation of petroleum exploration and production people who contributed to discoveries and developments elsewhere in Australia.


2002 ◽  
Vol 5 (01) ◽  
pp. 33-41 ◽  
Author(s):  
L.R. Brown ◽  
A.A. Vadie ◽  
J.O. Stephens

Summary This project demonstrated the effectiveness of a microbial permeability profile modification (MPPM) technology for enhancing oil recovery by adding nitrogenous and phosphorus-containing nutrients to the injection water of a conventional waterflooding operation. The MPPM technology extended the economic life of the field by 60 to 137 months, with an expected recovery of 63 600 to 95 400 m3 (400,000 to 600,000 bbl) of additional oil. Chemical changes in the composition of the produced fluids proved the presence of oil from unswept areas of the reservoir. Proof of microbial involvement was shown by increased numbers of microbes in cores of wells drilled within the field 22 months after nutrient injection began. Introduction The target for enhanced oil recovery processes is the tremendous quantity of unrecoverable oil in known deposits. Roughly two thirds [approximately 55.6×109 m3 (350 billion bbl)] of all of the oil discovered in the U.S. is economically unrecoverable with current technology. Because the microbial enhanced oil recovery (MEOR) technology in this report differs in several ways from other MEOR technologies, it is important that these differences be delineated clearly. In the first place, the present project is designed to enhance oil recovery from an entire oil reservoir, rather than treat single wells. Even more important is the fact that this technology relies on the action of the in-situ microflora, not microorganisms injected into the reservoir. It is important to note that MPPM technology does not interfere with the normal waterflood operation and is environmentally friendly in that neither microorganisms nor hazardous chemicals are introduced into the environment. Description of the Oil Reservoir. The North Blowhorn Creek Oil Unit (NBCU) is located in Lamar County, Alabama, approximately 75 miles west of Birmingham. This field is in what is known geologically as the Black Warrior basin. The producing formation is the Carter sandstone of Mississippian Age at a depth of approximately 700 m (2,300 ft). The Carter reservoir is a northwest/ southeast trending deltaic sand body, approximately 5 km (3 miles) long and 1 to 1.7 km (1/2 to 1 mile) wide. Sand thickness varies from only 1 m up to approximately 12 m (40 ft). The sand is relatively clean (greater than 90% quartz), with no swelling clays. The field was discovered in 1979 and initially developed on 80-acre spacing. Waterflooding of the reservoir began in 1983. The initial oil in place in the reservoir was approximately 2.54×106 m3 (16 million bbl), of which 874 430 m3 (5.5 million bbl) had been recovered by the end of 1995. To date, North Blowhorn Creek is the largest oil field discovered in the Black Warrior basin. Oil production peaked at almost 475 m3/d (3,000 BOPD) in 1985 and has since declined steadily. Currently, there are 20 injection wells and 32 producing wells. Oil production at the outset of the field demonstration was approximately 46 m3/d oil (290 BOPD), 1700 m3/d gas (60 MCFD), and 493 m3/d water (3,100 BWPD), with a water-injection rate of approximately 660 m3/d (4,150 BWPD). Projections at the beginning of the project were that approximately 1.59×106 m3 oil (10 million bbl of oil) would be left unrecovered if some new method of enhanced recovery were not effective. Prefield Trial Studies The concepts of the technology described in this paper had been proven to be effective in laboratory coreflood experiments.1,2 However, it seemed advisable to conduct coreflood experiments with cores from the reservoir being used in the field demonstration. Toward this end, two wells were drilled, and cores were obtained from one for the laboratory coreflood experiments to determine the schedule and amounts of nutrients to be employed in the field trial.3


2017 ◽  
pp. 95-101
Author(s):  
V. V. Panikarovskii ◽  
E. V. Panikarovskii

A brief review of the work on intensifying the inflow and increasing the oil recovery of the Neocomian deposits of the Priobskoye field is expounded. The analysis of technologies for increasing oil recovery of AS10, AS11, AS12 is performed. The technology of hydraulic fracturing in production and injection wells and methods of selecting wells for hydraulic fracturing in the operational well stock of the Priobskoye field are considered. Based on the analysis of enhanced oil recovery technologies, the need for hydraulic fracturing in low-productivity reservoirs has been proved.


Author(s):  
Novruzova Sudaba ◽  
Gadashova Elmira ◽  
Fariz Ahmed

The results of researches of the water encroachment of some offshore fields (Neft Dashlary, Guneshli, Pirallahi, Darwin Banka, Apsheron Banka, Western Apsheron, etc.) of the Republic of Azerbaijan, most of which are at a late stage of development, have been presented. These fields are represented by weakly cemented and loose reservoirs of heterogeneous structure, in which there is an uneven fluid flow. Water breakthrough occurs through high-permeability layers, and layers with low permeability are involved in development to a less extent. Subsequent attempts to involve them in the development process cause an irrational increase in the volume of injected water, which leads to product encroachment. The type of reservoir, characterized by the presence of fracture zones, contributing to the flow of water from the aquifers to the producing wells, as well as improving their hydrodynamic connection with the injection wells, also contributes to the growth of the rate of watering. The geological and technological reasons for the water encroachment have been determined. The heterogeneity of the above mentioned deposits has been proven. It is indicated that an additional reason for the early water encroachment of production wells is the violation of the annulus tightness. Maintaining high rates of oil production is achieved by bringing in new production wells, while most of the watered wells are retired from operation without having exhausted their potential. It is proposed to carry out the measures that will ensure isolation of the most washed out zones and depleted areas of the main productive layer of the field. Methods of selective water isolation and flow diversion technologies should be carried out, first of all, in wells with an increased density of current reserves in order to obtain additional oil production and increase the oil recovery factor, as well as in wells with a high fluid flow rate.


2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Pratik Prashant Pawar ◽  
Annamma Anil Odaneth ◽  
Rajeshkumar Natwarlal Vadgama ◽  
Arvind Mallinath Lali

Abstract Background Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (Heff/C ~ 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. Results Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. Conclusion The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.


Author(s):  
Ying-xian Liu ◽  
Jie Tan ◽  
Hui Cai ◽  
Yan-lai Li ◽  
Chun-yan Liu

AbstractThe water flooding characteristic curve method is one of the essential techniques to predict recoverable reserves. However, the recoverable reserves indicated by the existing water flooding characteristic curves of low-amplitude reservoirs with strong bottom water increase gradually, and the current local recovery degree of some areas has exceeded the predicted recovery rate. The applicability of the existing water flooding characteristic curves in low-amplitude reservoirs with strong bottom water is lacking, which affects the accurate prediction of development performance. By analyzing the derivation process of the conventional water flooding characteristic curve method, this manuscript finds out the reasons for the poor applicability of the existing water flooding characteristic curve in low-amplitude reservoir with strong bottom water and corrects the existing water flooding characteristic curve according to the actual situation of the oilfield and obtains the improvement method of water flooding characteristic curve in low-amplitude reservoir with strong bottom water. After correction, the correlation coefficient between $$\frac{{k_{ro} }}{{k_{rw} }}$$ k ro k rw and $$S_{w}$$ S w is 95.92%. According to the comparison between the actual data and the calculated data, in 2021/3, the actual water cut is 97.29%, the water cut predicted by the formula is 97.27%, the actual cumulative oil production is 31.19 × 104t, and the predicted cumulative oil production is 31.31 × 104t. The predicted value is consistent with the actual value. It provides a more reliable method for predicting low-amplitude reservoirs' recoverable ability with strong bottom water and guides the oilfield's subsequent decision-making.


Sign in / Sign up

Export Citation Format

Share Document