scholarly journals Evaluation of biological activities of highly diluted nucleotide sequences by using cellular models

2021 ◽  
Vol 11 (40) ◽  
pp. 194-195
Author(s):  
Etienne Capieaux ◽  
Ghada Alsaleh ◽  
Chloé Borde ◽  
Dominique Wachsmann ◽  
Vincent Maréchal ◽  
...  

Background: highly diluted specific nucleic acids (SNA®), designed to modulate viral and cytokine genes expression, are currently used in Micro-Immunotherapy to treat viral infections and immune disorders. Although some preliminary studies have showed clinical benefit of these homeopathic preparations [1], no experimental data are available to explain their mechanism of action. Aims: to investigate the in vitro effect of two sets of highly diluted (HD) SNA targeting i) latent/lytic Epstein-Barr virus (SNA EBV) and ii) TNF-α and its receptor p55 involved in rheumatoid arthritis (SNA RA) on cellular models. Methodology: serial homeopathic dilutions of SNA EBV and SNA RA (15cH-18cH) were tested on a EBV-positive B-lymphoblastoid (B95-8) and on a LPS-stimulated macrophage (THP1) cell lines respectively, in comparison with agitated/diluted water and scramble DNA sequences prepared in the same conditions (negative controls). For B95-8 proliferative model, high mobility group box 1 protein (HMGB1) was used as reference. Analyzed biological parameters on B95-8 were i) cell proliferation measured after 24 and 48h of incubation with HD SNA and ii) expression of the EBV ZEBRA protein in response to TGF-β by Western-blotting (T+24h). For THP1 model, TNF-α synthesis and release were determined by RT-qPCR and ELISA (protein), after stimulation by LPS (1µg/ml) and HD SNA co-administration. Results: we demonstrated that HD SNA RA significantly down-regulated TNF-α synthesis and release. This biological activity was showed to be specific (no effect of HD scramble SNA) and related to the level of dilution (maximal effect with higher dilutions). Unexpectedly, a biological effect of agitated/diluted water was also detected in both cellular models. For B95-8 model, this effect resulted in a significant decrease of B95-8 proliferation (comparable to the HMGB1 reference) and an inhibition of ZEBRA expression. Similarly, a reproducible stimulation effect of HD water was obtained in the LPS-stimulated THP1 model. Conclusions: these findings indicate that highly diluted SNA RA can regulate TNF-α synthesis and release by LPS-stimulated THP1 and support the hypothesis that these homeopathic preparations may act in modulating mRNA expression of the targeted genes. This in vitro work underlines the potential effect of agitated water in context of cellular models for testing biological properties of HD. [1] Jenaer M, Henry MF, Garcia A, Marichal B. Evaluation of 2LHERP in preventing recurrences of genital herpes. Br Homeopath J. 2000 Oct;89(4):174-7.

2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1181
Author(s):  
Federica Finetti ◽  
Marco Biagi ◽  
Jasmine Ercoli ◽  
Giulia Macrì ◽  
Elisabetta Miraldi ◽  
...  

Phaseolus vulgaris L. (common bean) is a leguminous species that is an important dietary component due to its high content of proteins, unsaturated fatty acids, minerals, dietary fibers and vitamins. Due to the high content of polyphenols, several biological activities have been described for bean extracts, making it possible to include P. vulgaris among food with beneficial effects for human health. Moreover, more than 40,000 varieties of beans have been recognised with different nutraceutical properties, pointing out the importance of food biodiversity. In this work, we describe for the first time the chemical composition and biological activity of a newly recognized Italian variety of P. vulgaris grown in a restricted area of the Tuscany region and named “Fagiola di Venanzio”. Fagiola di Venanzio water extract is rich in proteins, sugars and polyphenols and displays antioxidant, anti-inflammatory and antiproliferative activities in in vitro assays on colon cancer cellular models. Our data indicate that this variety of P. vulgaris appears to be a promising source of bioactive compounds and encourage more in-depth studies to better elucidate the implications of its consumption for public health.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 115 ◽  
Author(s):  
Martins Rucins ◽  
Pavels Dimitrijevs ◽  
Klavs Pajuste ◽  
Oksana Petrichenko ◽  
Ludmila Jackevica ◽  
...  

The design of nanoparticle delivery materials possessing biological activities is an attractive strategy for the development of various therapies. In this study, 11 cationic amphiphilic 4-(N-alkylpyridinium)-1,4-dihydropyridine (1,4-DHP) derivatives differing in alkyl chain length and propargyl moiety/ties number and position were selected for the study of their self-assembling properties, evaluation of their cytotoxicity in vitro and toxicity on microorganisms, and the characterisation of their interaction with phospholipids. These lipid-like 1,4-DHPs have been earlier proposed as promising nanocarriers for DNA delivery. We have revealed that the mean diameter of freshly prepared nanoparticles varied from 58 to 513 nm, depending upon the 4-(N-alkylpyridinium)-1,4-DHP structure. Additionally, we have confirmed that only nanoparticles formed by 4-(N-dodecylpyridinium)-1,4-DHP derivatives 3 and 6, and by 4-(N-hexadecylpyridinium)-1,4-DHP derivatives 10 and 11 were stable after two weeks of storage. The nanoparticles of these compounds were found to be homogenous in size distribution, ranging from 124 to 221 nm. The polydispersity index (PDI) values of 1,4-DHPs samples 3, 6, 10, and 11 were in the range of 0.10 to 0.37. We also demonstrated that the nanoparticles formed by 4-(N-dodecylpyridinium)-1,4-DHP derivatives 3, 6, and 9, and 4-(N-hexadecylpyridinium)-1,4-DHP derivatives 10 and 11 had zeta-potentials from +26.07 mV (compound 6) to +62.80 mV (compound 11), indicating a strongly positive surface charge and confirming the relative electrostatic stability of these nanoparticle solutions. Transmission electron microscopy (TEM) images of nanoaggregates formed by 1,4-DHPs 3 and 11 confirmed liposome-like structures with diameters around 70 to 170 nm. The critical aggregation concentration (CAC) value interval for 4-(N-alkylpyridinium)-1,4-DHP was from 7.6 µM (compound 11) to 43.3 µM (compound 6). The tested 4-(N-alkylpyridinium)-1,4-DHP derivatives were able to quench the fluorescence of the binary 1,6-diphenyl-1,3,5-hexatriene (DPH)—1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) system, demonstrating hydrophobic interactions of 1,4-DHPs with phospholipids. Thus, 4-(N-dodecylpyridinium)-1,4-DHP derivative 3 quenched the fluorescence of the DPH–DPPC system more efficiently than the other 4-(N-alkylpyridinium)-1,4-DHP derivatives. Likewise the compound 3, also 4-(N-dodecylpyridinium)-1,4-DHP derivative 9 interacted with the phospholipids. Moreover, we have established that increasing the length of the alkyl chain at the quaternised nitrogen of the 4-(N-alkylpyridinium)-1,4-DHP molecule or the introduction of propargyl moieties in the 1,4-DHP molecule significantly influences the cytotoxicity on HT-1080 (human fibrosarcoma) and MH-22A (mouse hepatocarcinoma) cell lines, as well as the estimated basal cytotoxicity. Additionally, it was demonstrated that the toxicity of the 4-(N-alkylpyridinium)-1,4-DHP derivatives on the Gram-positive and Gram-negative bacteria species and eukaryotic microorganism depended on the presence of the alkyl chain length at the N-alkyl pyridinium moiety, as well as the number of propargyl groups. These lipid-like compounds may be proposed for the further development of drug formulations to be used in cancer treatment.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 632 ◽  
Author(s):  
Gabriele Rocchetti ◽  
Biancamaria Senizza ◽  
Gokhan Zengin ◽  
Murat Ali Okur ◽  
Domenico Montesano ◽  
...  

Like other members of the Colchicum genus, C. szovitsii subsp. szovitsii is also of medicinal importance in Turkish traditional medicine. However, its biological properties have not been fully investigated. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme inhibitory effects of flower, root and leaf extracts, obtained using different extraction methods. In addition, a comprehensive (poly)-phenolic and alkaloid profiling of the different extracts was undertaken. In this regard, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) allowed us to putatively annotate 195 polyphenols and 87 alkaloids. The most abundant polyphenols were flavonoids (83 compounds), whilst colchicine and 2-demethylcolchicine were some of the most widespread alkaloids in each extract analyzed. However, our findings showed that C. szovitsii leaf extracts were a superior source of both total polyphenols and total alkaloids (being, on average 24.00 and 2.50 mg/g, respectively). Overall, methanolic leaf extracts showed the highest (p < 0.05) ferric reducing antioxidant power (FRAP) reducing power (on average 109.52 mgTE/g) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (on average 90.98 mgTE/g). Interestingly, each C. szovitsii methanolic extract was more active than the water extracts when considering enzymatic inhibition such as against tyrosinase, glucosidase, and acetylcholinesterase (AChE). Strong correlations (p < 0.01) were also observed between polyphenols/alkaloids and the biological activities determined. Multivariate statistics based on supervised orthogonal projections to latent structures discriminant analysis (OPLS-DA) allowed for the detection of those compounds most affected by the different extraction methods. Therefore, this is the first detailed evidence showing that C. szovitsii subsp. szovitsii might provide beneficial effects against oxidative stress and the associated chronic diseases. Nevertheless, the detailed mechanisms of action need to be further investigated.


2020 ◽  
Vol 48 (7) ◽  
pp. 3869-3887 ◽  
Author(s):  
Linlin Hou ◽  
Yuanjie Wei ◽  
Yingying Lin ◽  
Xiwei Wang ◽  
Yiwei Lai ◽  
...  

Abstract Some transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box. Sox2 can associate with RNA and DNA simultaneously to form ternary RNA/Sox2/DNA complexes. Deletion of the RBM does not affect selection of target genes but mitigates binding to pluripotency related transcripts, switches exon usage and impairs the reprogramming of somatic cells to a pluripotent state. Our findings designate Sox2 as a multi-functional factor that associates with RNA whilst binding to cognate DNA sequences, suggesting that it may co-transcriptionally regulate RNA metabolism during somatic cell reprogramming.


2020 ◽  
Vol 10 (1) ◽  
pp. 325 ◽  
Author(s):  
Francisco Javier Rodríguez-Lozano ◽  
Sergio López-García ◽  
David García-Bernal ◽  
Miguel R. Pecci-Lloret ◽  
Julia Guerrero-Gironés ◽  
...  

New bioactive materials have been developed for retrograde root filling. These materials come into contact with vital tissues and facilitate biomineralization and apical repair. The objective of this study was to evaluate the cytocompatibility and bioactivity of two bioactive cements, Bio-C Repair (Angelus, Londrina, Pr, Brazil) and TotalFill BC RRM putty (FGK, Dentaire SA, La-Chaux-de-fonds, Switzerland). The biological properties in human periodontal ligament stem cells (hPDLSCs) that were exposed to Bio-C Repair and TotalFill BC RRM putty were studied. Cell viability, migration, and cell adhesion were analyzed. Moreover, qPCR and mineralization assay were performed to evaluate the bioactivity potential of these cements. The results were statistically analyzed using ANOVA and the Tukey test (p < 0.05). It was observed that cell viability and cell migration in Bio-C Repair and TotalFill BC RRM putty were similar to the control without statistically significant differences, except at 72 h when TotalFill BC RRM putty was slightly lower (p < 0.05). Excellent cell adhesion and morphology were observed with both Bio-C Repair and TotalFill BC RRM putty. Both cements promoted the osteo- and cementogenic differentiation of hPDLSCs. These results suggest that Bio-C Repair and TotalFill BC RRM putty are biologically appropriate materials to be used as retrograde obturation material.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Shaopeng Wang ◽  
Caihua Zhang ◽  
Guang Yang ◽  
Yanzong Yang

Numerous studies have revealed that regular consumption of certain fruits and vegetables can reduce the risk of many diseases. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a spice and herbal medicine. It contains pungent phenolic substances collectively known as gingerols. 6-Gingerol is the major pharmacologically-active component of ginger. It is known to exhibit a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity, and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Taken together, this review summarizes the various in vitro and in vivo pharmacological aspects of 6-gingerol and the underlying mechanisms.


2015 ◽  
Vol 2015 ◽  
pp. 1-29 ◽  
Author(s):  
Ricardo Silva-Carvalho ◽  
Fátima Baltazar ◽  
Cristina Almeida-Aguiar

The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Severalin vitroandin vivostudies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.


2020 ◽  
Vol 71 (4) ◽  
pp. 336-346
Author(s):  
Mirela Calinescu ◽  
Ovidiu Oprea ◽  
Catalina Stoica ◽  
Mihai Nita-Lazar ◽  
Madalina Mihalache

Four coordination compounds of Pd(II), Pt(II) and Pt(IV) with usnic acid (H3AU) and 1-(o-tolyl)biguanide (TB) as ligands have been synthesized in view of their potential as antimicrobial, antifungal and antitumor agents. The metal complexes have been characterized by elemental and thermogravimetrical analyses, infrared and electronic spectra. Based on these studies, the following formulas have been proposed for the complexes: [Pd(TB)(H3AU)]PdCl4 (C1), [Pd(TB)(H2AU)] CH3COO (C2), [Pt(TB)(H2AU)Cl2]Cl (C3) and [Pt(TB)(H2AU)]Cl (C4), where H2AU is deprotonated usnic acid. The in vitro biological activities of the new complexes were tested against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 10231 and HeLa tumor cells. All complexes were found to have good biological properties and therefore they can be further explored in therapeutic applications.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 715-722 ◽  
Author(s):  
M L Philley ◽  
C Staben

Abstract The Neurospora crassa mt a-1 gene, encoding the MT a-1 polypeptide, determines a mating type properties: sexual compatibility and vegetative incompatibility with A mating type. We characterized in vivo and in vitro functions of the MT a-1 polypeptide and specific mutant derivatives. MT a-1 polypeptide produced in Escherichia coli bound to specific DNA sequences whose core was 5'-CTTTG-3'. DNA binding was a function of the MT a-1 HMG box domain (a DNA binding motif found in high mobility group proteins and a diverse set of regulatory proteins). Mutation within the HMG box eliminated DNA binding in vitro and eliminated mating in vivo, but did not interfere with vegetative incompatibility function in vivo. Conversely, deletion of amino acids 216-220 of MT a-1 eliminated vegetative incompatibility, but did not affect mating or DNA binding. Deletion of the carboxyl terminal half of MT a-1 eliminated both mating and vegetative incompatibility in vivo, but not DNA binding in vitro. These results suggest that mating depends upon the ability of MT a-1 polypeptide to bind to, and presumably to regulate the activity of, specific DNA sequences. However, the separation of vegetative incompatibility from both mating and DNA binding indicates that vegetative incompatibility functions by a biochemically distinct mechanism.


Sign in / Sign up

Export Citation Format

Share Document