scholarly journals Atmospheric sub-3 nm particles at high altitudes

2010 ◽  
Vol 10 (2) ◽  
pp. 437-451 ◽  
Author(s):  
S. Mirme ◽  
A. Mirme ◽  
A. Minikin ◽  
A. Petzold ◽  
U. Hõrrak ◽  
...  

Abstract. Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol particle formation begins at the diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.

2009 ◽  
Vol 9 (5) ◽  
pp. 19435-19470 ◽  
Author(s):  
S. Mirme ◽  
A. Mirme ◽  
A. Minikin ◽  
A. Petzold ◽  
U. Hõrrak ◽  
...  

Abstract. Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol formation begins at particle diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place actively throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.


2002 ◽  
Vol 2 (5) ◽  
pp. 1791-1807 ◽  
Author(s):  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. The formation and growth of atmospheric aerosol particles is considered using an exact discrete method with molecular resolution in size space. The method is immune to numerical diffusion problems that are a nuisance for typical simulation methods using a sectional representation for the particle size distribution. For condensational growth, a slight modification is proposed for the Fuchs-Sutugin expression, which improves the prediction of the growth rate of nano-sized particles by as much as a factor of two. The presented method is applied to particle formation in a Finnish Boreal forest and is shown to capture the essential features of the dynamics quite nicely. Furthermore, it is shown that the growth of the particles is roughly linear, which means that the amount of condensable vapour is constant (of the order 1013 1/m3).


2003 ◽  
Vol 3 (1) ◽  
pp. 251-257 ◽  
Author(s):  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. The formation and growth of atmospheric aerosol particles is considered using an exact discrete method with molecular resolution in size space. The method is immune to numerical diffusion problems that are a nuisance for typical simulation methods using a sectional representation for the particle size distribution. For condensational growth, a slight modification is proposed for the Fuchs-Sutugin expression, which improves the prediction of the growth rate of nano-sized particles by as much as a factor of two. The presented method is applied to particle formation in a Finnish Boreal forest and is shown to capture the essential features of the dynamics quite nicely. Furthermore, it is shown that the growth of the particles is roughly linear, which means that the amount of condensable vapour is constant (of the order 1013 1/m3).


2008 ◽  
Vol 8 (1) ◽  
pp. 129-139 ◽  
Author(s):  
T. Suni ◽  
M. Kulmala ◽  
A. Hirsikko ◽  
T. Bergman ◽  
L. Laakso ◽  
...  

Abstract. Biogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2–3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5–3 nm particles during these formation events were 2.89/2.68 nmh−1, respectively; for 3-7 nm particles 4.26/4.03, and for 7–20 nm particles 8.90/7.58 nmh−1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34–1.8 nm) were 2400/1700 cm−3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba.


2011 ◽  
Vol 11 (3) ◽  
pp. 1339-1353 ◽  
Author(s):  
I. Salma ◽  
T. Borsós ◽  
T. Weidinger ◽  
P. Aalto ◽  
T. Hussein ◽  
...  

Abstract. Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6–1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8 × 103 to 29 ×103 cm−3 with a yearly median of 11.8 × 103 cm−3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79 ± 6)%. Typical diurnal variation of the particle number concentration was related to the major emission patterns in cities, new particle formation, sinks of particles and meteorology. Shapes of the monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. New particle formation and growth unambiguously occurred on 83 days, which represent 27% of all relevant days. Hence, new particle formation and growth are not rare phenomena in Budapest. Their frequency showed an apparent seasonal variation with a minimum of 7.3% in winter and a maximum of 44% in spring. New particle formation events were linked to increased gas-phase H2SO4 concentrations. In the studied area, new particle formation is mainly affected by condensation sink and solar radiation. The formation process seems to be not sensitive to SO2, which was present in a yearly median concentration of 6.7 μg m−3. This suggests that the precursor gas was always available in excess. Formation rate of particles with a diameter of 6 nm varied between 1.65 and 12.5 cm−3 s−1 with a mean and standard deviation of (4.2 ± 2.5) cm−3 s−1. Seasonal dependency for the formation rate could not be identified. Growth curves of nucleated particles were usually superimposed on the characteristic diurnal pattern of road traffic direct emissions. The growth rate of the nucleation mode with a median diameter of 6 nm varied from 2.0 to 13.3 nm h−1 with a mean and standard deviation of (7.7 ± 2.4) nm h−1. There was an indicative tendency for larger growth rates in summer and for smaller values in winter. New particle formation events increased the total number concentration by a mean factor and standard deviation of 2.3 ± 1.1 relative to the concentration that occurred immediately before the event. Several indirect evidences suggest that the new particle formation events occurred at least over the whole city, and were of regional type. The results and conclusions presented are the first information of this kind for the region over one-year long time period.


2020 ◽  
Author(s):  
Lixia Liu ◽  
Hang Su ◽  
Ulrich Pöschl ◽  
Yafang Cheng

<p>Particle production in the upper troposphere has been reported as an important source of aerosol particles and cloud condensation nuclei in pristine environment and tropical regions and exerts significant climate effects. In this work, we develop a new organic nucleation scheme to the WRF-Chem model with extended particle size bins from 1nm to 10μm. We improve on previous coarse-resolution global simulations that approximate the highly oxygenated multifunctional organic compounds (HOMs) in a thermodynamic state by implementing kinetic calculation of HOMs and using fine-grid regional simulations. Sensitivity studies are conducted over the Amazon Basin during the dry season in 2014 to characterize the HOMs-induced new particle formation and identify its key controlling factors in Amazon. The model simulations are evaluated using aircraft observations of profiles of aerosol particles during the 2014 ACRIDICON-CHUVA campaign. We show that the new particle formation occurs mostly at the upper troposphere and modestly in the planetary boundary layer, driven by low temperature and high concentration of biogenic precursors, respectively. Including the HOMs-induced biogenic new particle formation mechanism decreases the model prediction bias of the particle number concentration in the upper troposphere by over 50%, suggesting an important role of the HOMs-induced biogenic new particle formation in the dry season over the Amazon region.</p>


2001 ◽  
pp. 13-17
Author(s):  
Serhii Viktorovych Svystunov

In the 21st century, the world became a sign of globalization: global conflicts, global disasters, global economy, global Internet, etc. The Polish researcher Casimir Zhigulsky defines globalization as a kind of process, that is, the target set of characteristic changes that develop over time and occur in the modern world. These changes in general are reduced to mutual rapprochement, reduction of distances, the rapid appearance of a large number of different connections, contacts, exchanges, and to increase the dependence of society in almost all spheres of his life from what is happening in other, often very remote regions of the world.


Moreana ◽  
2005 ◽  
Vol 42 (Number 164) (4) ◽  
pp. 187-206
Author(s):  
Clare M. Murphy

The Thomas More Society of Buenos Aires begins or ends almost all its events by reciting in both English and Spanish a prayer written by More in the margins of his Book of Hours probably while he was a prisoner in the Tower of London. After a short history of what is called Thomas More’s Prayer Book, the author studies the prayer as a poem written in the form of a psalm according to the structure of Hebrew poetry, and looks at the poem’s content as a psalm of lament.


2019 ◽  
Vol 10 (10) ◽  
pp. 1003-1008
Author(s):  
Hiroyuki Matsuoka ◽  

In the world auto market, top three companies are VW(Volkswagen), Runault-Nissan-Mistubishi, and Toyota. About some selected countries and areas, China, England, Italy, Australia, Germany, Turkey, Russia, Sweden, USA, Brazil, UAE, Japan, Vietnam and Thailand are more competitive. However, the situation is different. Seeing monopolistic market countries and areas, Saudi Arabia, Taiwan, Korea, Malaysia, France, India, and Pakistan, in particular, the influence of Japan to Taiwan, India, and Pakistan is very big. But in Korea and France, their own companies’ brands occupy the market. In Japan domestic market, the overall situation is competitive. Almost all vehicles made in Japan are Japanese brand. From now on, we have to note the development of electric vehicle (EV) and other new technologies such as automatic driving and connected car. That is because they will give a great impact on the auto industry and market of Japan. Now Japan’s auto industry is going to be consolidated into three groups, Honda, Toyota group, and Renault-Nissan-Mitsubishi group for seeking the scale merit of economy. Therefore, I will pay attention to the worldwide development of EV and other new technologies and the reorganization of auto companies groups.


Sign in / Sign up

Export Citation Format

Share Document