High-Resolution Climate Simulations of Oxygen Isotope Stage 3 in Europe

2002 ◽  
Vol 58 (3) ◽  
pp. 296-309 ◽  
Author(s):  
Eric Barron ◽  
David Pollard

AbstractOxygen isotope stage 3 (OIS 3) climate and its variations are the focus of the Stage 3 Project. The objective of the OIS 3 modeling effort is twofold: (1) to explore the importance of different boundary conditions on the climate of Europe and (2) to develop climate simulations that best reproduce the wealth of OIS 3 observations. Given the complexity of the topography and coastlines, the modeling effort is based on a “nested” General Circulation Model (GCM) and mesoscale model (RegCM2) with climate simulations for Europe on a 60-km grid spacing. The key conclusions are as follows: (1) The mesoscale model, driven by GCM output, does a reasonable job of reproducing the modern European climate. (2) OIS 3 variations in orbit, CO2, and ice-sheet size are of little significance in explaining the observed climate variability. (3) The model results focus attention on North Atlantic sea-surface temperatures (SST) as a major factor in explaining OIS 3 climates. (4) Experiments for different SST values capture a number of systematic changes in sea-level pressure and precipitation. (5) Climate models simulate substantial European cooling and significant changes in precipitation, but they do not explain large differences between OIS 3 warm and cold episodes.

2012 ◽  
Vol 12 (6) ◽  
pp. 13827-13880
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the modeled meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and modeled meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw modeled δD fields.


2013 ◽  
Vol 9 (1) ◽  
pp. 741-773 ◽  
Author(s):  
T. Russon ◽  
A. W. Tudhope ◽  
G. C. Hegerl ◽  
M. Collins ◽  
J. Tindall

Abstract. Water isotope-enabled coupled atmosphere/ocean climate models allow for exploration of the relative contributions to coral stable oxygen isotope (δ18Ocoral) variability arising from Sea Surface Temperature (SST) and the isotopic composition of seawater (δ18Osw). The unforced behaviour of the isotope-enabled HadCM3 Coupled General Circulation Model affirms that the extent to which inter-annual δ18Osw variability contributes to that in model δ18Ocoral is strongly spatially dependent, ranging from being negligible in the eastern equatorial Pacific to accounting for 50% of δ18Ocoral variance in parts of the western Pacific. In these latter cases, a significant component of the inter-annual δ18Osw variability is correlated to that in SST, meaning that local calibrations of the effective local δ18Ocoral–SST relationships are likely to be essential. Furthermore, the relationship between δ18Osw and SST in the central and western equatorial Pacific is non-linear, such that the interpretation of model δ18Ocoral in the context of a linear dependence on SST alone may lead to overestimation (by up to 20%) of the SST anomalies associated with large El-Niño events. Intra-model evaluation of a salinity-based pseudo-coral approach shows that such an approach captures the first-order features of the model δ18Osw behaviour. However, the utility of the pseudo-corals is limited by the extent of spatial variability seen within the modelled slopes of the temporal salinity–δ18Osw relationship.


2013 ◽  
Vol 9 (4) ◽  
pp. 1543-1557 ◽  
Author(s):  
T. Russon ◽  
A. W. Tudhope ◽  
G. C. Hegerl ◽  
M. Collins ◽  
J. Tindall

Abstract. Water isotope-enabled coupled atmosphere–ocean climate models allow for exploration of the relative contributions to coral stable oxygen isotope (δ18Ocoral) variability arising from sea surface temperature (SST) and the isotopic composition of seawater (δ18Osw). The unforced behaviour of the isotope-enabled HadCM3 coupled general circulation model suggests that the extent to which inter-annual δ18Osw variability contributes to that in model δ18Ocoral is strongly spatially dependent, ranging from being negligible in the eastern equatorial Pacific to accounting for 50% of δ18Ocoral variance in parts of the western Pacific. In these latter cases, a significant component of the inter-annual δ18Osw variability is correlated to that in SST, meaning that local calibrations of the effective local δ18Ocoral–SST relationships are likely to be essential. Furthermore, the relationship between δ18Osw and SST can be non-linear, such that the model interpretation of central and western equatorial Pacific δ18Ocoral in the context of a linear dependence on SST alone leads to overestimation (by up to 20%) of the SST anomalies associated with large El Niño events. Intra-model evaluation of a salinity-based pseudo-coral approach shows that such an approach captures the first-order features of the model δ18Osw behaviour. However, the utility of the pseudo-corals is limited by the extent of spatial variability seen within the modelled slopes of the temporal salinity–δ18Osw relationship.


2012 ◽  
Vol 12 (21) ◽  
pp. 10485-10504 ◽  
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the model meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and model meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw model δD fields.


2017 ◽  
Vol 31 (1) ◽  
pp. 81-97 ◽  
Author(s):  
Elina Plesca ◽  
Verena Grützun ◽  
Stefan A. Buehler

Abstract The tropical overturning circulations are likely weakening under increased CO2 forcing. However, insufficient understanding of the circulations’ dynamics diminishes the full confidence in such a response. Based on a CMIP5 idealized climate experiment, this study investigates the changes in the Pacific Walker circulation under anthropogenic forcing and the sensitivity of its weakening response to internal variability, general circulation model (GCM) configuration, and indexing method. The sensitivity to internal variability is analyzed by using a 68-member ensemble of the MPI-ESM-LR model, and the influence of model physics is analyzed by using the 28-member CMIP5 ensemble. Three simple circulation indices—based on mean sea level pressure, 500-hPa vertical velocity, and 200-hPa velocity potential—are computed for each member of the two ensembles. The study uses the output of the CMIP5 idealized transient climate simulations with 1% yr−1 CO2 increase from preindustrial level, and investigates the detected circulation response until the moment of CO2 doubling (70 yr). Depending on the indexing method, it is found that 50%–93% of the MPI-ESM-LR and 54%–75% of the CMIP5 ensemble members project significant negative trends in the circulation’s intensity. This large spread in the ensembles reduces the confidence that a weakening circulation is a robust feature of climate change. Furthermore, the similar magnitude of the spread in both ensembles shows that the Walker circulation response is strongly influenced by natural variability, even over a 70-yr period.


2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2011 ◽  
Vol 4 (4) ◽  
pp. 1035-1049 ◽  
Author(s):  
W.-L. Chan ◽  
A. Abe-Ouchi ◽  
R. Ohgaito

Abstract. Recently, PlioMIP (Pliocene Model Intercomparison Project) was established to assess the ability of various climate models to simulate the mid-Pliocene warm period (mPWP), 3.3–3.0 million years ago. We use MIROC4m, a fully coupled atmosphere-ocean general circulation model (AOGCM), and its atmospheric component alone to simulate the mPWP, utilizing up-to-date data sets designated in PlioMIP as boundary conditions and adhering to the protocols outlined. In this paper, a brief description of the model is given, followed by an explanation of the experimental design and implementation of the boundary conditions, such as topography and sea surface temperature. Initial results show increases of approximately 10°C in the zonal mean surface air temperature at high latitudes accompanied by a decrease in the equator-to-pole temperature gradient. Temperatures in the tropical regions increase more in the AOGCM. However, warming of the AOGCM sea surface in parts of the northern North Atlantic Ocean and Nordic Seas is less than that suggested by proxy data. An investigation of the model-data discrepancies and further model intercomparison studies can lead to a better understanding of the mid-Pliocene climate and of its role in assessing future climate change.


2016 ◽  
Vol 16 (23) ◽  
pp. 15413-15424 ◽  
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Yousuke Sato ◽  
Toshihiko Takemura

Abstract. Aerosol–cloud interactions are one of the most uncertain processes in climate models due to their nonlinear complexity. A key complexity arises from the possibility that clouds can respond to perturbed aerosols in two opposite ways, as characterized by the traditional “cloud lifetime” hypothesis and more recent “buffered system” hypothesis. Their importance in climate simulations remains poorly understood. Here we investigate the response of the liquid water path (LWP) to aerosol perturbations for warm clouds from the perspective of general circulation model (GCM) and A-Train remote sensing, through process-oriented model evaluations. A systematic difference is found in the LWP response between the model results and observations. The model results indicate a near-global uniform increase of LWP with increasing aerosol loading, while the sign of the response of the LWP from the A-Train varies from region to region. The satellite-observed response of the LWP is closely related to meteorological and/or macrophysical factors, in addition to the microphysics. The model does not reproduce this variability of cloud susceptibility (i.e., sensitivity of LWP to perturbed aerosols) because the parameterization of the autoconversion process assumes only suppression of rain formation in response to increased cloud droplet number, and does not consider macrophysical aspects that serve as a mechanism for the negative responses of the LWP via enhancements of evaporation and precipitation. Model biases are also found in the precipitation microphysics, which suggests that the model generates rainwater readily even when little cloud water is present. This essentially causes projections of unrealistically frequent and light rain, with high cloud susceptibilities to aerosol perturbations.


2020 ◽  
Author(s):  
Saurav Pradhananga ◽  
Arthur Lutz ◽  
Archana Shrestha ◽  
Indira Kadel ◽  
Bikash Nepal ◽  
...  

A supplement to the Climate Change Scenarios for Nepal report published by the Ministry of Forests and Environment for the National Adaptation Plan (NAP) Process, this manual provides detailed information about the processes through which the assessment highlighted in the report can be carried out. They include – selection of the general circulation/climate models (GCMs), downscaling of the GCM dataset, assessment of changes in precipitation and temperature, and assessment of change in climate extremes. The manual downscales climate datasets for the Koshi River basin, the Kabul River basin, and the Kailash Sacred Landscape to analyse future scenarios in these basins and the landscape.


Sign in / Sign up

Export Citation Format

Share Document