scholarly journals Evolution of trace gases and particles emitted by a chaparral fire in California

2012 ◽  
Vol 12 (3) ◽  
pp. 1397-1421 ◽  
Author(s):  
S. K. Akagi ◽  
J. S. Craven ◽  
J. W. Taylor ◽  
G. R. McMeeking ◽  
R. J. Yokelson ◽  
...  

Abstract. Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO) increased from −5.13 (±1.13) × 10−3 to 10.2 (±2.16) × 10−2 in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.27 (±0.97) × 106 molec cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NOx was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first ~4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO2) increased by a factor of 2.50 ± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO2 decreased sharply for the first hour and then increased slowly with a net decrease of ~20% over 4 h. The fraction of thickly coated rBC particles increased up to ~85% over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations.

2011 ◽  
Vol 11 (8) ◽  
pp. 22483-22544 ◽  
Author(s):  
S. K. Akagi ◽  
J. S. Craven ◽  
J. W. Taylor ◽  
G. R. McMeeking ◽  
R. J. Yokelson ◽  
...  

Abstract. Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 ha prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured post-emission chemical changes in the isolated downwind plume for ~4 h of smoke aging. The measurements were carried out on board a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO) increased from −0.005 to 0.102 in 4.5 h. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.7 ± 0.4 and 7.3 ± 3.0 (respectively) over the same aging period. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.3 (±1.0) × 106 molecules cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased with plume aging. The observed ammonium increase was a factor of 3.9 ± 2.6 in about 4 h, but accounted for just ~36 % of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NOx was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate over a 4 h aging period. The excess aerosol light scattering in the plume (normalized to excess CO2) increased by a factor of 2.3 ± 0.7 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO2 decreased sharply for the first hour and then increased slowly with a net decrease of ~24 % over 4 h. The fraction of thickly coated rBC particles increased almost twofold over the 4 h aging period. Decreasing OA accompanied by increased scattering/coating in the initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations.


2011 ◽  
Vol 11 (11) ◽  
pp. 5153-5168 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
N. Bei ◽  
...  

Abstract. Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 includes the recently developed volatility basis-set framework in which both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico de Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites is encouraging. The average predicted PM1 organic aerosol (OA) concentration in T0, T1, and T2 is 18 μg m−3, 11.7 μg m−3, and 10.5 μg m−3 respectively, while the corresponding measured values are 17.2 μg m−3, 11 μg m−3, and 9 μg m−3. The average predicted locally-emitted primary OA concentrations, 4.4 μg m−3 at T0, 1.2 μg m−3 at T1 and 1.7 μg m−3 at PTP, are in reasonably good agreement with the corresponding PMF analysis estimates based on the Aerosol Mass Spectrometer (AMS) observations of 4.5, 1.3, and 2.9 μg m−3 respectively. The model reproduces reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m−3 predicted versus 7.5 μg m−3 measured), in T1 (6.3 μg m−3 predicted versus 4.6 μg m−3 measured) and in PTP (6.6 μg m−3 predicted versus 5.9 μg m−3 measured). The rest of the OA mass (6.1 μg m−3 and 4.2 μg m−3 in T0 and T1 respectively) is assumed to originate from biomass burning activities and is introduced to the model as part of the boundary conditions. Inside Mexico City (at T0), the locally-produced OA is predicted to be on average 60 % locally-emitted primary (POA), 6 % semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 34 % traditional SOA from the oxidation of VOCs (V-SOA). The average contributions of the OA components to the locally-produced OA for the entire modelling domain are predicted to be 32 % POA, 10 % S-SOA and I-SOA, and 58 % V-SOA. The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.


2010 ◽  
Vol 10 (22) ◽  
pp. 10789-10801 ◽  
Author(s):  
D. Chand ◽  
D. A. Hegg ◽  
R. Wood ◽  
G. E. Shaw ◽  
D. Wallace ◽  
...  

Abstract. Measurements of submicron aerosol composition, light scattering, and size distribution were made from 17 October to 15 November 2008 at the elevated Paposo site (25° 0.4' S, 70° 27.01' W, 690 m a.s.l.) on the Chilean coast as part of the VOCALS* Regional Experiment (REx). Based on the chemical composition measurements, a receptor modeling analysis using Positive Matrix Factorization (PMF) was carried out, yielding four broad source categories of the aerosol mass, light scattering coefficient, and a proxy for cloud condensation nucleus (CCN) concentration at 0.4% supersaturation derived from the size distribution measurements assuming an observed soluble mass fraction of 0.53. The sources resolved were biomass burning, marine, an urban-biofuels mix and a somewhat ambiguous mix of smelter emissions and mineral dust. The urban-biofuels mix is the most dominant aerosol mass component (52%) followed by biomass burning (25%), smelter/soil dust (12%) and marine (9%) sources. The average (mean±std) submicron aerosol mass concentration, aerosol light scattering coefficient and proxy CCN concentration were, 8.77±5.40 μg m−3, 21.9±11.0 Mm−1 and 548±210 cm−3, respectively. Sulfate is the dominant identified submicron species constituting roughly 40% of the dry mass (3.64±2.30 μg m−3), although the indentified soluble species constitute only 53% of the mass. Much of the unidentified mass is likely organic in nature. The relative importance of each aerosol source category is different depending upon whether mass, light scattering, or CCN concentration is being considered, indicating that the mean size of aerosols associated with each source are different. Marine aerosols do not appear to contribute to more than 10% to either mass, light scattering, or CCN concentration at this site. Back trajectory cluster analysis proved consistent with the PMF source attribution. *VOCALS: VAMOS** Ocean-Cloud-Atmosphere-Land Study (VOCALS) **VAMOS: Variability of American Monsoon System


2010 ◽  
Vol 10 (7) ◽  
pp. 17853-17887 ◽  
Author(s):  
D. Chand ◽  
D. A. Hegg ◽  
R. Wood ◽  
G. E. Shaw ◽  
D. Wallace ◽  
...  

Abstract. Measurements of submicron aerosol composition, light scattering, and size distribution were made from 17 October to 15 November 2008 at the elevated Paposo site (25° 0.4' S, 70°27.01' W, 690 m a.s.l.) on the Chilean coast as part of the VOCALS1 Regional Experiment (REx). Based on the chemical composition measurements, a receptor modeling analysis using Positive Matrix Factorization (PMF) was carried out, yielding four broad source categories of the aerosol mass, light scattering coefficient, and a proxy for cloud condensation nucleus (CCN) concentration at 0.4% supersaturation derived from the size distribution measurements assuming an observed soluble mass fraction of 0.53. The sources resolved were biomass burning, marine, an urban-biofuels mix and a somewhat ambiguous mix of smelter emissions and mineral dust. The urban-biofuels mix is the most dominant aerosol mass component (52%) followed by biomass burning (25%), smelter/soil dust (12%) and marine (9%) sources. The average (mean±std) submicron aerosol mass concentration, aerosol light scattering coefficient and proxy CCN concentration were, 8.77±5.40 μg m−3, 21.9±11.0 Mm−1 and 548±210 cm−3, respectively. Sulfate is the dominant identified submicron species constituting roughly 40% of the dry mass (3.64±2.30 μg m−3, although the indentified soluble species constitute only 53% of the mass. Much of the unidentified mass is likely organic in nature. The relative importance of each aerosol source category is different depending upon whether mass, light scattering, or CCN concentration is being considered, indicating that the mean size of aerosols associated with each source are different. Marine aerosols do not appear to contribute to more than 10% to either mass, light scattering, or CCN concentration at this site. Back trajectory cluster analysis proved consistent with the PMF source attribution. 1 VOCALS: VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS)VAMOS: Variability of American Monsoon System


2019 ◽  
Author(s):  
Christopher Y. Lim ◽  
David H. Hagan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
...  

Abstract. Biomass burning is an important source of aerosol and trace gases to the atmosphere, but how these emissions change chemically during their lifetimes is not fully understood. As part of the Fire Influence on Regional and Global Environments Experiment (FIREX 2016), we investigated the effect of photochemical aging on biomass burning organic aerosol (BBOA), with a focus on fuels from the western United States. Emissions were sampled into a small (150 L) environmental chamber and photochemically aged via the addition of ozone and irradiation by 254 nm light. While some fraction of species undergoes photolysis, the vast majority of aging occurs via reaction with OH radicals, with total OH exposures corresponding to the equivalent of up to 10 days of atmospheric oxidation. For all fuels burned, large and rapid changes are seen in the ensemble chemical composition of BBOA, as measured by an aerosol mass spectrometer (AMS). Secondary organic aerosol (SOA) formation is seen for all aging experiments and continues to grow with increasing OH exposure, but the magnitude of the SOA formation is highly variable between experiments. This variability can be explained well by a combination of experiment-to-experiment differences in OH exposure and the total concentration of non-methane organic gases (NMOGs) in the chamber before oxidation, measured by PTR-ToF-MS (r2 values from 0.64 to 0.83). From this relationship, we calculate the fraction of carbon from biomass burning NMOGs that is converted to SOA as a function of equivalent atmospheric aging time, with carbon yields ranging from 24 ± 4 % after 6 hours to 56 ± 9 % after 4 days.


2021 ◽  
Vol 13 (2) ◽  
pp. 270
Author(s):  
Adrian Doicu ◽  
Dmitry S. Efremenko ◽  
Thomas Trautmann

An algorithm for the retrieval of total column amount of trace gases in a multi-dimensional atmosphere is designed. The algorithm uses (i) certain differential radiance models with internal and external closures as inversion models, (ii) the iteratively regularized Gauss–Newton method as a regularization tool, and (iii) the spherical harmonics discrete ordinate method (SHDOM) as linearized radiative transfer model. For efficiency reasons, SHDOM is equipped with a spectral acceleration approach that combines the correlated k-distribution method with the principal component analysis. The algorithm is used to retrieve the total column amount of nitrogen for two- and three-dimensional cloudy scenes. Although for three-dimensional geometries, the computational time is high, the main concepts of the algorithm are correct and the retrieval results are accurate.


2008 ◽  
Vol 47 (7) ◽  
pp. 5576-5580 ◽  
Author(s):  
Passapong Wutimakun ◽  
Taichiro Mori ◽  
Hisashi Miyazaki ◽  
Yoichi Okamoto ◽  
Jun Morimoto ◽  
...  

2021 ◽  
Author(s):  
Antonio G. Bruno ◽  
Jeremy J. Harrison ◽  
David P. Moore ◽  
Martyn P. Chipperfield ◽  
Richard J. Pope

<p>Hydrogen cyanide (HCN) is one of the most abundant cyanides present in the global atmosphere, and is a tracer of biomass burning, especially for peatland fires. The HCN lifetime is 2–5 months in the troposphere but several years in the stratosphere. Understanding the physical and chemical mechanisms of HCN variability is important due to its non-negligible role in the nitrogen cycle. The main source of tropospheric HCN is biomass burning with minor contributions from industry and transport. The main loss mechanism of atmospheric HCN is the reaction with the hydroxyl radical (OH). Ocean uptake is also important, while in the stratosphere oxidation by reaction with O(<sup>1</sup>D) needs to be considered.</p><p>HCN variability can be investigated using chemical model simulations, such as three-dimensional (3-D) chemical transport models (CTMs). Here we use an adapted version of the TOMCAT 3-D CTM at a 1.2°x1.2° spatial resolution from the surface to ~60 km for 12 idealised HCN tracers which quantify the main loss mechanisms of HCN, including ocean uptake, atmospheric oxidation reactions and their combinations. The TOMCAT output of the HCN distribution in the period 2004-2020 has been compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) over an altitude grid from 6 to 42 km. HCN model data have also been compared with ground-based measurements of HCN columns from NDACC FTIR stations and with in-situ volume mixing ratios (VMRs) from NOAA ground-based measurement sites.</p><p>The model outputs for the HCN tracer with full treatment of the loss processes generally agree well with ACE-FTS measurements, as long as we use recent laboratory values for the atmospheric loss reactions. Diagnosis of the individual loss terms shows that decay of the HCN profile in the upper stratosphere is due mainly to the O(<sup>1</sup>D) sink. In order to test the magnitude of the tropospheric OH sink and the magnitude of the ocean sink, we also show the comparisons of the model tracers with surface-based observations. The implications of our results for understanding HCN and its variability are then discussed.</p>


2018 ◽  
Vol 74 (12) ◽  
pp. 1719-1724 ◽  
Author(s):  
Yimin Mao ◽  
Peter Y. Zavalij

Two ZnII-based coordination polymers (CPs) were synthesized by the hydrothermal method, using Zn(NO3)2·6H2O and furan-2,5-dicarboxylic acid (FDCA) in dimethylformamide (DMF) solvent, at 95 °C. Poly[tetrakis(dimethylazanium) [tetrakis(μ2-furan-2,5-dicarboxylato-κ2 O 2:O 5)dizinc(II)]], {(C2H8N)4[Zn2(C6H2O5)4]} n or {[DMA]4[ZnII 2(FDC)4]} n (DMA = dimethylazanium and FDC = furan-2,5-dicarboxylate), (1), was obtained with a 1:1 molar ratio of ZnII and FDCA. It crystallized in the monoclinic space group C2/c. Coordinated by ZnII ions, FDC2− ligands form 21 double-stranded helices propagating along the b axis. The helices are interconnected and extend laterally in the a direction, forming a two-dimensional (2D) sheet-like network. The 2D sheets are stacked along the c direction without interconnections. DMA cations are cocrystallized in (1) and are hydrogen bonded with carboxylate O atoms of the FDC2− ligands. The hydrogen-bonding pattern consists of R 2 2(4) and R 2 2(10) motifs alternating in a chain. Poly[bis(dimethylazanium) [bis(μ4-furan-2,5-dicarboxylato-κO 2:κO 2′:κO 5:κO 5)bis(μ3-furan-2,5-dicarboxylato-κO 2:κO 2′:κO 5)dizinc(II)] dimethylformamide 3.08-solvate], {(C2H8N)2[Zn2(C6H2O5)4]·3.08C3H7NO} n or {[DMA]2[ZnII 3(FDC)4]·3.08DMF} n , (2), was obtained with a 1:2 molar ratio of ZnII and FDCA. It crystallized in the monoclinic space group P21/c, forming a three-dimensional network. The pores are filled with DMA cations and DMF solvent molecules.


2016 ◽  
Vol 16 (2) ◽  
pp. 1139-1160 ◽  
Author(s):  
L. Xu ◽  
L. R. Williams ◽  
D. E. Young ◽  
J. D. Allan ◽  
H. Coe ◽  
...  

Abstract. The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O : C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 °C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O : C of OA and find that particles with a wide range of O : C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O : C in bulk OA.


Sign in / Sign up

Export Citation Format

Share Document