scholarly journals The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment

2012 ◽  
Vol 12 (9) ◽  
pp. 4001-4009 ◽  
Author(s):  
M. T. Montgomery ◽  
R. K. Smith

Abstract. Analyses of thermodynamic data gathered from airborne dropwindsondes during the Tropical Cyclone Structure (2008) experiment are presented for the disturbance that became Typhoon Nuri. Although previous work has suggested that Nuri formed within the protective recirculating "pouch" region of a westward propagating wave-like disturbance and implicated rotating deep convective clouds in driving the inflow to spin up the tangential circulation of the system-scale flow, the nature of the thermodynamic environment that supported the genesis remains a topic of debate. During the genesis phase, vertical profiles of virtual potential temperature show little variability between soundings on a particular day and the system-average soundings likewise show a negligible change. There is a tendency also for the lower and middle troposphere to moisten. However, the data show that, on the scale of the recirculating region of the disturbance, there was no noticeable reduction of virtual temperature in the lower troposphere, but a small warming (less than 1 K) in the upper troposphere. Vertical profiles of pseudo-equivalent potential temperature, θe, during the genesis show a modestly decreasing deficit of θe in the vertical between the surface and the height of minimum θe (between 3 and 4 km), from 17.5 K to 15.2 K. The findings reported here are consistent with those found for developing disturbances observed in the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. Some implications of the findings are discussed.

2011 ◽  
Vol 11 (11) ◽  
pp. 31115-31136 ◽  
Author(s):  
M. T. Montgomery ◽  
R. K. Smith

Abstract. Analyses of thermodynamic data gathered from airborne dropwindsondes during the Tropical Cyclone Structure (2008) experiment are presented for the disturbance that became Typhoon Nuri. Although previous work has suggested that Nuri formed within the protective recirculating "pouch" region of a westward-propagating wave-like disturbance and implicated rotating deep convective clouds in driving the inflow to spin up the tangential circulation of the system-scale flow, the nature of the thermodynamic environment that supported the genesis remains a topic of debate. During the genesis phase, vertical profiles of virtual potential temperature show little variability between soundings on a particular day and the system-average soundings likewise show a negligible change. There is a tendency also for the lower and middle troposphere to moisten. However, the data show that on the scale of the recirculating region of the disturbance, there was no noticeable reduction of virtual temperature in the lower troposphere, but a small warming (less than 1 K) in the upper troposphere. Vertical profiles of pseudo-equivalent potential temperature, θe, during the genesis show a modestly decreasing deficit of θe in the vertical between the surface and a height of minimum θe (between 3 and 4 km), from 17.5 K to 15.2 K. The findings reported here are consistent with that found for developing disturbances observed in the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. Some implications of the findings are discussed.


2013 ◽  
Vol 6 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
W. W. Verstraeten ◽  
K. F. Boersma ◽  
J. Zörner ◽  
M. A. F. Allaart ◽  
K. W. Bowman ◽  
...  

Abstract. In this analysis, Tropospheric Emission Spectrometer (TES) V004 nadir ozone (O3) profiles are validated with more than 4400 coinciding ozonesonde measurements taken across the world from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) during the period 2005–2010. The TES observation operator was applied to the sonde data to ensure a consistent comparison between TES and ozonesonde data, i.e. without the influence of the a priori O3 profile needed to regulate the retrieval. Generally, TES V004 O3 retrievals are biased high by 2–7 ppbv (7–15%) in the troposphere, consistent with validation results from earlier studies. Because of two degrees of freedom for signal in the troposphere, we can distinguish between upper and lower troposphere mean biases, respectively ranging from −0.4 to +13.3 ppbv for the upper troposphere and +3.9 to +6.0 ppbv for the lower troposphere. Focusing on the 464 hPa retrieval level, broadly representative of the free tropospheric O3, we find differences in the TES biases for the tropics (+3 ppbv, +7%), sub-tropics (+5 ppbv, +11%), and northern (+7 ppbv, +13%) and southern mid-latitudes (+4 ppbv, +10%). The relatively long-term record (6 yr) of TES–ozonesonde comparisons allowed us to quantify temporal variations in TES biases at 464 hPa. We find that there are no discernable biases in each of these latitudinal bands; temporal variations in the bias are typically within the uncertainty of the difference between TES and ozonesondes. Establishing these bias patterns is important in order to make meaningful use of TES O3 data in applications such as model evaluation, trend analysis, or data assimilation.


2012 ◽  
Vol 12 (4) ◽  
pp. 9035-9077 ◽  
Author(s):  
T. Umezawa ◽  
T. Machida ◽  
K. Ishijima ◽  
H. Matsueda ◽  
Y. Sawa ◽  
...  

Abstract. We present the mixing ratio, δ13C and δD of atmospheric CH4 using commercial aircraft in the upper troposphere (UT) over the Western Pacific for the period December 2005–September 2010. The observed results were compared with those obtained using commercial container ships in the lower troposphere (LT) over the same region. In the Northern Hemisphere (NH), the UT CH4 mixing ratio shows high values in the boreal summer–autumn, when the LT CH4 mixing ratio reaches a seasonal minimum. From tagged tracer experiments made using an atmospheric chemistry transport model, we found that such high CH4 values are due to rapid transport of air masses influenced by CH4 sources in South Asia and East Asia. The observed isotopic ratio data suggest that CH4 sources in these areas have relatively low δ13C and δD signatures, implying biogenic sources. Latitudinal distributions of the annual average UT and LT CH4 mixing ratio intersect each other in the tropics; the mixing ratio value is lower in the UT than in the LT in the NH and the situation is reversed in the Southern Hemisphere (SH), due mainly to the NH air intrusion into the SH through the UT. Such intersection of the latitudinal distributions is observable in δD but not in δ13C, implying additional contribution of a reaction of CH4 with active chlorine in the marine boundary layer. δ13C and δD show low values in the NH and high values in the SH both in the UT and in the LT. We also observed an increase in the CH4 mixing ratio and decreases in δ13C and δD during 2007–2008 in the UT and LT over the Western Pacific, possibly due to enhanced biogenic emissions in the tropics and NH.


2006 ◽  
Vol 23 (11) ◽  
pp. 1506-1518 ◽  
Author(s):  
Gé Verver ◽  
Masatomo Fujiwara ◽  
Pier Dolmans ◽  
Cor Becker ◽  
Paul Fortuin ◽  
...  

Abstract In climate research there is a strong need for accurate observations of water vapor in the upper atmosphere. Radiosoundings provide relative humidity profiles but the accuracy of many routine instruments is notoriously inadequate in the cold upper troposphere. In this study results from a soundings program executed in Paramaribo, Suriname (5.8°N, 55.2°W), are presented. The aim of this program was to compare the performance of different humidity sensors in the upper troposphere in the Tropics and to test different bias corrections suggested in the literature. The payload of each sounding consisted of a chilled-mirror “Snow White” sensor from Meteolabor AG, which was used as a reference, and two additional sensors from Vaisala, that is, either the RS80A, the RS80H, or the RS90. In total 37 separate soundings were made. For the RS80A a clear, dry bias of between −4% and −8% RH is found in the lower troposphere compared to the Snow White observation, confirming the findings in previous studies. A mean dry bias was found in the upper troposphere, which could be effectively corrected. The RS80H sensor shows a significant wet bias of 2%–5% in RH in the middle and upper troposphere, which has not been reported before. Comparing observations with RS80H sensors of different ages gives no indication of sensor aging or sensor contamination. It is therefore concluded that the plastic cover introduced by Vaisala to avoid sensor contamination is effective. Finally, the RS90 sensor yields a small but significant wet bias of 2%–3% below 7-km altitude. The time-lag error correction from Miloshevich et al. was applied to the Vaisala data, which resulted in an increased variability in the relative humidity profile above 9- (RS80A), 8- (RS80H), and 11-km (RS90) altitude, respectively, which is in better agreement with the Snow White data. The averaged Snow White profile is compared with the average profiles of relative humidity from the European Centre for Medium-Range Weather Forecasts (ECMWF). No significant bias is found in either the analyses or the forecasts. The correlation coefficient for the Snow White and ECMWF data between 200 and 800 hPa was 0.66 for the 36-h forecast and 0.77 for the analysis.


2019 ◽  
Vol 76 (8) ◽  
pp. 2559-2573
Author(s):  
Hui Wang ◽  
Yuqing Wang ◽  
Jing Xu ◽  
Yihong Duan

Abstract This study examines the evolution of the warm-core structure during the secondary eyewall formation (SEF) and the subsequent eyewall replacement cycle (ERC) in a numerically simulated tropical cyclone (TC) under idealized conditions. Results show that prior to the SEF, the TC exhibited a double warm-core structure centered in the middle and upper troposphere in the eye region, and as the storm intensified with a rapid outward expansion of tangential winds, the warm core strengthened and a secondary off-center warm ring developed between 8- and 16-km heights near the outer edge of the eye. During the SEF, both the upper-level warm core and the secondary off-center warm ring rapidly strengthened. As the secondary eyewall intensified and contracted and the primary eyewall weakened and dissipated, the off-center warm ring extended inward and merged with the inner warm core to form a warm core typical of a single-eyewall TC. Results from the azimuthal-mean potential temperature budget indicate that the warming in the eye is due to subsidence and the warming above 14-km height outside the eye is largely contributed by radial warm advection in the outflow. The development of the off-center warm ring is largely due to the subsidence warming near the inner edge of the primary eyewall and in the moat area and the warming by diabatic heating in the upper part of the inner eyewall below 14-km height. Further analysis indicates that the eddy advection also played some role in the warming above 12-km height in the upper troposphere.


2016 ◽  
Author(s):  
M. Diallo ◽  
B. Legras ◽  
E. Ray ◽  
A. Engel ◽  
J. A. Añel

Abstract. In this study, we aim to reconstruct a relevant and new database of monthly zonal mean distribution of carbon dioxide (CO2) at global scale extending from the upper-troposphere (UT) to stratosphere (S). This product can be used for model and satellite validation in the UT/S, as a prior for inversion modelling and mainly to analyse a plausible feature of the stratospheric-tropospheric exchange as well as the stratospheric circulation and its variability. To do so, we investigate the ability of a Lagrangian trajectory model guided by ERA-Interim reanalysis to construct the CO2 abundance in the UT/S. From 10 year backward trajectories and tropospheric observations of CO2, we reconstruct upper-tropospheric and stratospheric CO2 over the period 2000–2010. The inter-comparisons of the reconstructed CO2 with mid-latitude vertical profiles measured by balloon samples as well as quasi-horizontal air samples from ER-2 aircraft during SOLVE and CONTRAIL campaigns exhibit a remarkable agreement. That demonstrates the potential of Lagrangian model to reconstruct CO2 in the UT/S. The zonal mean distribution exhibits relatively large CO2 in the tropical stratosphere due to the seasonal variation of the tropical upwelling of Brewer-Dobson circulation. During winter and spring, the tropical pipe is relatively isolated but is less narrow during summer and autumn so that high CO2 values are more readily transported out of the tropics to the mid- and high latitude stratosphere. The shape of the vertical profiles suggests that relatively high CO2 above 20 km altitude mainly enter the stratosphere through tropical upwelling. CO2 mixing ratio is relatively low in the polar and tropical regions above 25 km. On average the CO2 mixing ratio decreases with altitude by 6–8 ppmv from the UT to stratosphere (e.g. up to 35 km) and is nearly constant with altitude.


Abstract The sporadic formation of short-lived convective clouds in the eye of Tropical Cyclone (TC) Trami (2018) is investigated using dropsonde data and simulation results from a coupled atmosphere–ocean model. According to the satellite data, top height of the convective clouds exceeds 9 km above mean sea level, considerably taller than that of typical hub clouds (2–3 km). These clouds are located 10–30 km away from the TC center. Hence, these convective clouds are called deep eye clouds (DECs) in this study. The dropsonde data reveal increase in relative humidity in the eye region during the formation of DECs. Short-lived convective clouds are simulated up to the middle troposphere in the eye region in the coupled model. Investigation of thermodynamic conditions shows a weakened low-level warm core and associated favorable conditions for convection in the eye region during the formation of DECs. DECs are formed after the weakening and outward displacement of convective heating within the eyewall. To elucidate the influence of the changes in convective heating within the eyewall on the formation of DECs, we calculate secondary circulation and associated adiabatic warming induced by convective heating within the eyewall using the Sawyer–Eliassen equation. In the eye region, weakenings of subsidence and associated vertical potential temperature advection are observed as DECs are formed. This suggests that the weakening and outward displacement of convective heating within the eyewall create favorable conditions for the sporadic formation of DECs.


2020 ◽  
Author(s):  
Paul Keil ◽  
Hauke Schmidt ◽  
Bjorn Stevens

<p>The tropospheric lapse rate in the tropics follows a moist adiabat quite closely and is mainly set by surface temperature and humidity in the convecting regions. Therefore, warming or biases at the surface are transferred via the moist adiabat to the upper troposphere. However, climate models show large discrepancies in the upper troposphere and recent observed upper tropospheric warming is around 0.5K weaker than predicted by the moist adiabat theory. Here we use the control simulations of the CMIP5 ensemble to show that large differences in the upper troposphere exist in the mean state that are unrelated to inter-model differences in the lower troposphere. In fact, CMIP5 models diverge (positively and negatively) from the moist pseudoadiabat by up to 2K at 300hPa. Precipitation weighted SSTs have recently been used to resolve the discrepancy between models and observations in upper tropospheric warming, but we show that they are not able to explain the differences in the mean state. While it is difficult to exactly depict the reasons for the inter-model spread, we demonstrate how the upper tropospheric lapse rate can deviate from the moist adiabat for the same lower tropospheric state with AMIP experiments. For this we use the ICON-A model, in which we tune convective and microphysical parameters. An improved understanding of the effect of different parameterisations on the models' lapse rates may help to better understand differences in the response to global warming.</p>


2007 ◽  
Vol 20 (12) ◽  
pp. 2745-2759 ◽  
Author(s):  
Piero Cau ◽  
John Methven ◽  
Brian Hoskins

Abstract The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapor content in these regions is determined by their “origins,” here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation, which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the Tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.


2015 ◽  
Vol 15 (17) ◽  
pp. 23841-23891 ◽  
Author(s):  
H. Petetin ◽  
V. Thouret ◽  
A. Fontaine ◽  
B. Sauvage ◽  
G. Athier ◽  
...  

Abstract. In the framework of the MOZAIC-IAGOS program, ozone and carbon monoxide vertical profiles are available since 1994 and 2002, respectively. This study investigates the variability and trends of both species at several tropospheric layers above the Frankfurt and Munich airports where about 21 600 flights have been performed over the 1994–2012 period, which represents the densest dataset in the world (about 75 flights per month on average). Over that period, most mean ozone trends are positive but insignificant at a 95 % confidence level, except in winter where significant upward trends (around +0.38 ± 0.24 ppb yr−1) are found. Conversely, a significant increase of annual background ozone is highlighted, mostly during winter and autumn. Mean annual ozone trends increase with altitude, the largest increase being found in summer due to a noticeable decrease of highest ozone concentrations observed in the lower troposphere during the second half period. Over the 2002–2012 period, most mean CO trends are significantly negative, the decrease being higher in the lower troposphere compared to the mid- and upper troposphere with again, major differences in summer. Trends in the ozone seasonal cycle are also investigated, with a focus on the phase. Ozone maxima occur earlier and earlier with a shift around −10.6 ± 2.9 days decade−1 in the lower troposphere, in agreement with previous studies. The analysis of other ozone datasets in Europe (including surface stations and ozone soundings) confirms this trend, but highlights strong heterogeneities in the phase change. Interestingly, this shift is shown to decrease with altitude, with trends of −4.3 ± 2.4 and −2.0 ± 1.7 days decade−1 in the mid- and upper troposphere, respectively. The geographic origin of the air masses sampled by aircraft is analysed with FLEXPART backward simulations and suggests, together with trends and phase changes results, that an increase of the Asian contribution to ozone in the upper troposphere may compensate during summer the decrease of European and North American contributions associated to emission control over these two regions.


Sign in / Sign up

Export Citation Format

Share Document