scholarly journals Global distribution of CO<sub>2</sub> in the Upper-Troposphere and Stratosphere

2016 ◽  
Author(s):  
M. Diallo ◽  
B. Legras ◽  
E. Ray ◽  
A. Engel ◽  
J. A. Añel

Abstract. In this study, we aim to reconstruct a relevant and new database of monthly zonal mean distribution of carbon dioxide (CO2) at global scale extending from the upper-troposphere (UT) to stratosphere (S). This product can be used for model and satellite validation in the UT/S, as a prior for inversion modelling and mainly to analyse a plausible feature of the stratospheric-tropospheric exchange as well as the stratospheric circulation and its variability. To do so, we investigate the ability of a Lagrangian trajectory model guided by ERA-Interim reanalysis to construct the CO2 abundance in the UT/S. From 10 year backward trajectories and tropospheric observations of CO2, we reconstruct upper-tropospheric and stratospheric CO2 over the period 2000–2010. The inter-comparisons of the reconstructed CO2 with mid-latitude vertical profiles measured by balloon samples as well as quasi-horizontal air samples from ER-2 aircraft during SOLVE and CONTRAIL campaigns exhibit a remarkable agreement. That demonstrates the potential of Lagrangian model to reconstruct CO2 in the UT/S. The zonal mean distribution exhibits relatively large CO2 in the tropical stratosphere due to the seasonal variation of the tropical upwelling of Brewer-Dobson circulation. During winter and spring, the tropical pipe is relatively isolated but is less narrow during summer and autumn so that high CO2 values are more readily transported out of the tropics to the mid- and high latitude stratosphere. The shape of the vertical profiles suggests that relatively high CO2 above 20 km altitude mainly enter the stratosphere through tropical upwelling. CO2 mixing ratio is relatively low in the polar and tropical regions above 25 km. On average the CO2 mixing ratio decreases with altitude by 6–8 ppmv from the UT to stratosphere (e.g. up to 35 km) and is nearly constant with altitude.

2010 ◽  
Vol 28 (11) ◽  
pp. 2149-2159 ◽  
Author(s):  
S. Fadnavis ◽  
T. Chakraborty ◽  
G. Beig

Abstract. The Model for Ozone and Related chemical Tracers-2 (MOZART-2) is used to examine the evolution of pollutant O3 in the upper troposphere over the Indian region. Vertical profiles of ozone mixing ratio retrieved from Microwave Limb Sounder (MLS) aboard Earth Observing System (EOS) AURA satellite for the period 2005–2009 and Tropospheric Emission Spectrometer (TES) aboard (EOS) AURA for the period 2006–2007 has been analyzed. The satellite observations reveal the evidence of downward propagation of ozone (100–200 ppb) due to stratospheric intrusion during the winter and pre-monsoon seasons. The regular feature of enhancement of ozone in the upper troposphere over India is presented. Results obtained by the MOZART-2 simulations (for years 2000–2005) confirm the observations and indicate stratospheric intrusion of O3 during winter and pre-monsoon seasons. Observed enhanced O3 mixing ratio in the upper troposphere is explained by, variation of Potential Vorticity (PV), tropopause pressure, relative humidity and CO-O3 correlation.


2015 ◽  
Vol 8 (5) ◽  
pp. 4817-4858
Author(s):  
J. Jia ◽  
A. Rozanov ◽  
A. Ladstätter-Weißenmayer ◽  
J. P. Burrows

Abstract. In this manuscript, the latest SCIAMACHY limb ozone scientific vertical profiles, namely the current V2.9 and the upcoming V3.0, are extensively compared with ozone sonde data from the WOUDC database. The comparisons are made on a global scale from 2003 to 2011, involving 61 sonde stations. The retrieval processors used to generate V2.9 and V3.0 data sets are briefly introduced. The comparisons are discussed in terms of vertical profiles and stratospheric partial columns. Our results indicate that the V2.9 ozone profile data between 20–30 km is in good agreement with ground based measurements with less than 5% relative differences in the latitude range of 90° S–40° N (with exception of the tropical Pacific region where an overestimation of more than 10% is observed), which corresponds to less than 5 DU partial column differences. In the tropics the differences are within 3%. However, this data set shows a significant underestimation northwards of 40° N (up to ~15%). The newly developed V3.0 data set reduces this bias to below 10% while maintaining a good agreement southwards of 40° N with slightly increased relative differences of up to 5% in the tropics.


2012 ◽  
Vol 12 (4) ◽  
pp. 9035-9077 ◽  
Author(s):  
T. Umezawa ◽  
T. Machida ◽  
K. Ishijima ◽  
H. Matsueda ◽  
Y. Sawa ◽  
...  

Abstract. We present the mixing ratio, δ13C and δD of atmospheric CH4 using commercial aircraft in the upper troposphere (UT) over the Western Pacific for the period December 2005–September 2010. The observed results were compared with those obtained using commercial container ships in the lower troposphere (LT) over the same region. In the Northern Hemisphere (NH), the UT CH4 mixing ratio shows high values in the boreal summer–autumn, when the LT CH4 mixing ratio reaches a seasonal minimum. From tagged tracer experiments made using an atmospheric chemistry transport model, we found that such high CH4 values are due to rapid transport of air masses influenced by CH4 sources in South Asia and East Asia. The observed isotopic ratio data suggest that CH4 sources in these areas have relatively low δ13C and δD signatures, implying biogenic sources. Latitudinal distributions of the annual average UT and LT CH4 mixing ratio intersect each other in the tropics; the mixing ratio value is lower in the UT than in the LT in the NH and the situation is reversed in the Southern Hemisphere (SH), due mainly to the NH air intrusion into the SH through the UT. Such intersection of the latitudinal distributions is observable in δD but not in δ13C, implying additional contribution of a reaction of CH4 with active chlorine in the marine boundary layer. δ13C and δD show low values in the NH and high values in the SH both in the UT and in the LT. We also observed an increase in the CH4 mixing ratio and decreases in δ13C and δD during 2007–2008 in the UT and LT over the Western Pacific, possibly due to enhanced biogenic emissions in the tropics and NH.


2020 ◽  
Author(s):  
Xiaolu Yan ◽  
Paul Konopka ◽  
Marius Hauck ◽  
Aurélien Podglajen ◽  
Felix Ploeger

Abstract. Inter-hemispheric transport may strongly affect the trace gas composition of the atmosphere, especially in relation to anthropogenic emissions which originate mainly in the Northern Hemisphere. This study investigates the transport from the boundary surface layer of the Northern Hemispheric (NH) extratropics (30–90° N), Southern Hemispheric (SH) extratropics (30–90° S), and tropics (30° S–30° N) into the global upper troposphere and lower stratosphere (UTLS) using simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In particular, we diagnose inter-hemispheric transport in terms of the air mass fractions (AMF), age spectra, and the mean age of air (AoA) calculated for these three source regions. We find that the AMFs from the NH extratropics to the UTLS are about five times larger than the corresponding contributions from the SH extratropics and almost twenty times smaller than those from the tropics. The amplitude of the AMF seasonal variability originating from the NH extratropics is comparable to that from the tropics. The NH and SH extratropics age spectra show much stronger seasonality compared to the seasonality of the tropical age spectra. The transit time of NH extratropical origin air to the SH extratropics is longer than vice versa. The asymmetry of the inter-hemispheric transport is mainly driven by the Asian summer monsoon (ASM). Both ASM and westerly ducts affect the cross hemispheric transport of the NH extratropical air to the SH, and it is an interplay between the ASM and westerly ducts which triggers such cross-equator transport from boreal summer to fall, mainly westerly ducts over the eastern Atlantic.


2021 ◽  
Vol 21 (9) ◽  
pp. 6627-6645
Author(s):  
Xiaolu Yan ◽  
Paul Konopka ◽  
Marius Hauck ◽  
Aurélien Podglajen ◽  
Felix Ploeger

Abstract. Inter-hemispheric transport may strongly affect the trace gas composition of the atmosphere, especially in relation to anthropogenic emissions, which originate mainly in the Northern Hemisphere. This study investigates the transport from the boundary surface layer of the northern hemispheric (NH) extratropics (30–90∘ N), southern hemispheric (SH) extratropics (30–90∘ S), and tropics (30∘ S–30∘ N) into the global upper troposphere and lower stratosphere (UTLS) using simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In particular, we diagnose inter-hemispheric transport in terms of the air mass fractions (AMFs), age spectra, and the mean age of air (AoA) calculated for these three source regions. We find that the AMFs from the NH extratropics to the UTLS are about 5 times larger than the corresponding contributions from the SH extratropics and almost 20 times smaller than those from the tropics. The amplitude of the AMF seasonal variability originating from the NH extratropics is comparable to that from the tropics. The NH and SH extratropical age spectra show much stronger seasonality compared to the seasonality of the tropical age spectra. The transit time of NH-extratropical-origin air to the SH extratropics is longer than vice versa. The asymmetry of the inter-hemispheric transport is mainly driven by the Asian summer monsoon (ASM). We confirm the important role of ASM and westerly ducts in the inter-hemispheric transport from the NH extratropics to the SH. Furthermore, we find that it is an interplay between the ASM and westerly ducts which triggers such cross-Equator transport from boreal summer to fall in the UTLS between 350 and 370 K.


2009 ◽  
Vol 9 (21) ◽  
pp. 8317-8330 ◽  
Author(s):  
M. George ◽  
C. Clerbaux ◽  
D. Hurtmans ◽  
S. Turquety ◽  
P.-F. Coheur ◽  
...  

Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp satellite measures carbon monoxide (CO) on a global scale, twice a day. CO total columns and vertical profiles are retrieved in near real time from the nadir radiance spectra measured by the instrument in the thermal infrared (TIR) spectral range. This paper describes the measurement vertical sensitivity and provides a first assessment of the capabilities of IASI to measure CO distributions. On the global scale, 0.8 to 2.4 independent pieces of information are available for the retrieval. At mid latitudes, the information ranges between 1.5 and 2, which enables the lower and upper troposphere to be distinguished, especially when thermal contrast is significant. Global distributions of column CO are evaluated with correlative observations available from other nadir looking TIR missions currently in operation: the Measurements of Pollution in the Troposphere (MOPITT) onboard TERRA, the Atmospheric Infrared Sounder (AIRS) onboard AQUA and the Tropospheric Emission Spectrometer (TES) onboard AURA. The IASI CO columns are compared with MOPITT, AIRS and TES CO columns, adjusted with the a priori, for three different months: August 2008, November 2008 and February 2009. On average, total column discrepancies of about 7% are found between IASI and the three other sounders in the Northern Hemisphere and in the equatorial region. However when strong CO concentrations are present, such as during fire events, these discrepancies can climb as high as 17%. Instrument specifications of IASI versus other missions are also discussed.


2011 ◽  
Vol 11 (11) ◽  
pp. 31115-31136 ◽  
Author(s):  
M. T. Montgomery ◽  
R. K. Smith

Abstract. Analyses of thermodynamic data gathered from airborne dropwindsondes during the Tropical Cyclone Structure (2008) experiment are presented for the disturbance that became Typhoon Nuri. Although previous work has suggested that Nuri formed within the protective recirculating "pouch" region of a westward-propagating wave-like disturbance and implicated rotating deep convective clouds in driving the inflow to spin up the tangential circulation of the system-scale flow, the nature of the thermodynamic environment that supported the genesis remains a topic of debate. During the genesis phase, vertical profiles of virtual potential temperature show little variability between soundings on a particular day and the system-average soundings likewise show a negligible change. There is a tendency also for the lower and middle troposphere to moisten. However, the data show that on the scale of the recirculating region of the disturbance, there was no noticeable reduction of virtual temperature in the lower troposphere, but a small warming (less than 1 K) in the upper troposphere. Vertical profiles of pseudo-equivalent potential temperature, θe, during the genesis show a modestly decreasing deficit of θe in the vertical between the surface and a height of minimum θe (between 3 and 4 km), from 17.5 K to 15.2 K. The findings reported here are consistent with that found for developing disturbances observed in the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. Some implications of the findings are discussed.


2017 ◽  
Vol 17 (6) ◽  
pp. 3861-3878 ◽  
Author(s):  
Mohamadou Diallo ◽  
Bernard Legras ◽  
Eric Ray ◽  
Andreas Engel ◽  
Juan A. Añel

Abstract. In this study, we construct a new monthly zonal mean carbon dioxide (CO2) distribution from the upper troposphere to the stratosphere over the 2000–2010 time period. This reconstructed CO2 product is based on a Lagrangian backward trajectory model driven by ERA-Interim reanalysis meteorology and tropospheric CO2 measurements. Comparisons of our CO2 product to extratropical in situ measurements from aircraft transects and balloon profiles show remarkably good agreement. The main features of the CO2 distribution include (1) relatively large mixing ratios in the tropical stratosphere; (2) seasonal variability in the extratropics, with relatively high mixing ratios in the summer and autumn hemisphere in the 15–20 km altitude layer; and (3) decreasing mixing ratios with increasing altitude from the upper troposphere to the middle stratosphere ( ∼ 35 km). These features are consistent with expected variability due to the transport of long-lived trace gases by the stratospheric Brewer–Dobson circulation. The method used here to construct this CO2 product is unique from other modelling efforts and should be useful for model and satellite validation in the upper troposphere and stratosphere as a prior for inversion modelling and to analyse features of stratosphere–troposphere exchange as well as the stratospheric circulation and its variability.


2021 ◽  
Author(s):  
Xiaolu Yan ◽  
Paul Konopka ◽  
Marius Hauck ◽  
Aurélien Podglajen ◽  
Felix Ploeger

&lt;p&gt;Inter-hemispheric transport may strongly affect the trace gas composition of the atmosphere, especially in relation to anthropogenic emissions which originate mainly in the Northern Hemisphere. This study investigates the transport from the boundary surface layer of the Northern Hemispheric (NH) extratropics (30-90&lt;sup&gt;o&lt;/sup&gt;N), Southern Hemispheric (SH) extratropics (30-90&lt;sup&gt;o&lt;/sup&gt;S), and tropics (30&lt;sup&gt;o&lt;/sup&gt;S-30&lt;sup&gt;o&lt;/sup&gt;N) into the global upper troposphere and lower stratosphere (UTLS) using simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In particular, we diagnose inter-hemispheric transport in terms of the air mass fractions (AMF), age spectra, and the mean age of air (AoA) calculated for these three source regions. We find that the AMFs from the NH extratropics to the UTLS are about five times larger than the corresponding contributions from the SH extratropics and almost twenty times smaller than those from the tropics. The amplitude of the AMF seasonal variability originating from the NH extratropics is comparable to that from the tropics. The NH and SH extratropics age spectra show much stronger seasonality compared to the seasonality of the tropical age spectra. The transit time of NH extratropical origin air to the SH extratropics is longer than vice versa. The asymmetry of the inter-hemispheric transport is mainly driven by the Asian summer monsoon (ASM). We confirm the important role of ASM and westerly ducts in the inter-hemispheric transport from the NH extratropics to the SH. However, we find that it is an interplay between the ASM and westerly ducts which triggers such cross-equator transport from boreal summer to fall, mainly westerly ducts over the eastern Atlantic.&lt;/p&gt;


2017 ◽  
Vol 30 (1) ◽  
pp. 373-392 ◽  
Author(s):  
Benjamin D. Santer ◽  
Susan Solomon ◽  
Giuliana Pallotta ◽  
Carl Mears ◽  
Stephen Po-Chedley ◽  
...  

Updated and improved satellite retrievals of the temperature of the mid-to-upper troposphere (TMT) are used to address key questions about the size and significance of TMT trends, agreement with model-derived TMT values, and whether models and satellite data show similar vertical profiles of warming. A recent study claimed that TMT trends over 1979 and 2015 are 3 times larger in climate models than in satellite data but did not correct for the contribution TMT trends receive from stratospheric cooling. Here, it is shown that the average ratio of modeled and observed TMT trends is sensitive to both satellite data uncertainties and model–data differences in stratospheric cooling. When the impact of lower-stratospheric cooling on TMT is accounted for, and when the most recent versions of satellite datasets are used, the previously claimed ratio of three between simulated and observed near-global TMT trends is reduced to approximately 1.7. Next, the validity of the statement that satellite data show no significant tropospheric warming over the last 18 years is assessed. This claim is not supported by the current analysis: in five out of six corrected satellite TMT records, significant global-scale tropospheric warming has occurred within the last 18 years. Finally, long-standing concerns are examined regarding discrepancies in modeled and observed vertical profiles of warming in the tropical atmosphere. It is shown that amplification of tropical warming between the lower and mid-to-upper troposphere is now in close agreement in the average of 37 climate models and in one updated satellite record.


Sign in / Sign up

Export Citation Format

Share Document