scholarly journals Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008

2014 ◽  
Vol 14 (4) ◽  
pp. 2015-2038 ◽  
Author(s):  
J. M. Livingston ◽  
J. Redemann ◽  
Y. Shinozuka ◽  
R. Johnson ◽  
P. B. Russell ◽  
...  

Abstract. Airborne sunphotometer measurements acquired by the NASA Ames Airborne Tracking Sunphotometer (AATS-14) aboard the NASA P-3 research aircraft are used to evaluate dark-target over-land retrievals of extinction aerosol optical depth (AOD) from spatially and temporally near-coincident measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) during the summer 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. The new MODIS Collection 6 aerosol data set includes retrievals of AOD at both 10 km × 10 km and 3 km × 3 km (at nadir) resolution. In this paper we compare MODIS and AATS AOD at 553 nm in 58 10 km and 134 3 km retrieval grid cells. These AOD values were derived from data collected over Canada on four days during short time segments of five (four Aqua and one Terra) satellite overpasses of the P-3 during low-altitude P-3 flight tracks. Three of the five MODIS–AATS coincidence events were dominated by smoke: one included a P-3 transect of a well-defined smoke plume in clear sky, but two were confounded by the presence of scattered clouds above smoke. The clouds limited the number of MODIS retrievals available for comparison, and led to MODIS AOD retrievals that underestimated the corresponding AATS values. This happened because the MODIS aerosol cloud mask selectively removed 0.5 km pixels containing smoke and clouds before the aerosol retrieval. The other two coincidences (one Terra and one Aqua) occurred during one P-3 flight on the same day and in the same general area, in an atmosphere characterized by a relatively low AOD (< 0.3), spatially homogeneous regional haze from smoke outflow with no distinguishable plume. For the ensemble data set for MODIS AOD retrievals with the highest-quality flag, MODIS AOD agrees with AATS AOD within the expected MODIS over-land AOD uncertainty in 60% of the retrieval grid cells at 10 km resolution and 69% at 3 km resolution. These values improve to 65 % and 74%, respectively, when the cloud-affected case with the strongest plume is excluded. We find that the standard MODIS dark-target over-land retrieval algorithm fails to retrieve AOD for thick smoke, not only in cloud-contaminated regions but also in clear sky. We attribute this to deselection, by the cloud and/or bright surface masks, of 0.5 km resolution pixels that contain smoke.

2013 ◽  
Vol 13 (6) ◽  
pp. 15007-15059 ◽  
Author(s):  
J. M. Livingston ◽  
J. Redemann ◽  
Y. Shinozuka ◽  
R. Johnson ◽  
P. B. Russell ◽  
...  

Abstract. Airborne sunphotometer measurements acquired by the NASA Ames Airborne Tracking Sunphotometer (AATS-14) from the NASA P-3 research aircraft are used to evaluate dark-target over-land retrievals of extinction aerosol optical depth (AOD) from spatially and temporally near-coincident measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) during the summer 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. The new MODIS Collection 6 aerosol data set includes retrievals of AOD at both 10 km × 10 km and 3 km × 3 km (at nadir) resolution. In this paper we compare MODIS and AATS AOD at 553 nm in 58 10 km and 134 3 km retrieval grid cells. These AOD values were derived from data collected over Canada on four days during short time segments of five (four Aqua and one Terra) satellite overpasses of the P-3 during low altitude P-3 flight tracks. Three of the five MODIS/AATS coincidence events were dominated by smoke: one included a P-3 transect of a well-defined smoke plume in clear sky, but two were confounded by the presence of scattered clouds above smoke. The clouds limited the number of MODIS retrievals available for comparison, and led to MODIS AOD retrievals that underestimated the corresponding AATS values. This happened because the MODIS aerosol cloud mask selectively removed 0.5 km pixels containing smoke and clouds before the aerosol retrieval. The other two coincidences (one Terra and one Aqua) occurred during one P-3 flight on the same day and in the same general area, in an atmosphere characterized by a relatively low AOD (< 0.3), and spatially homogeneous regional haze from smoke outflow with no distinguishable plume. For the ensemble data set for MODIS AOD retrievals with the highest-quality flag, MODIS AOD agrees with AATS AOD within the expected MODIS over-land AOD uncertainty in 60% of the retrieval grid cells at 10 km resolution and 69% at 3 km resolution. These values improve to 65% and 74%, respectively, when the cloud-contaminated case with the strongest plume is excluded. We find that the standard MODIS dark-target over-land retrieval algorithm fails to retrieve AOD for thick smoke, not only in cloud-contaminated regions, but also in clear sky. We attribute this to deselection, by the cloud and/or bright surface masks, of 0.5 km resolution pixels that contain smoke.


2020 ◽  
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multi-band algorithm similar to those of polar-orbiting satellites’ sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Therefore, ABI AOD is expected to have accuracy and precision comparable to MODIS AOD and VIIRS AOD. However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to errors in the land surface reflectance relationship between the bands used in the ABI AOD retrieval algorithm, which vary with respect to the Sun-satellite geometry. To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30-day period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period August 6 to December 31, 2018 are used to validate the bias correction algorithm. For the top 2 qualities ABI AOD, after bias correction, the correlation between ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root mean square error (RMSE) improves from 0.09 to 0.05. These results for the bias corrected top 2 qualities ABI AOD are comparable to those of the uncorrected high-quality ABI AOD. Thus, by using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the area coverage of ABI AOD is substantially increased without loss of data accuracy.


Author(s):  
Yi WANG ◽  
Jun Wang ◽  
Robert C Levy ◽  
Xiaoguang Xu ◽  
Jeffrey S Reid

We present a new approach to retrieve Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) over the turbid coastal water. This approach supplements the operational Dark Target (DT) aerosol retrieval algorithm that currently don&rsquo;t conduct any AOD retrieval in the regions with large water-leaving radiances in the visible spectrum. Over the global coastal water regions in all cloud-free conditions, this unavailability of AOD retrievals due to the inherent limitation in existing DT algorithm is ~20%. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 &mu;m is negligible regardless of water turbidity. This refinement, with the assumption that the aerosol single scattering properties over coastal turbid water are similar to that over the adjacent open-ocean pixels, yields ~18% more of MODIS-AERONET collocated pairs for six AEROENT stations in the coastal water regions. Furthermore, comparison with these AERONET observations show that the new AOD retrievals are in either equivalent or better accuracy than those retrieved by the MODIS operational algorithm (over coastal land and non-turbid coastal water). Combining the new retrievals with the existing MODIS operational retrievals not only yield an overall improvement of AOD over those coastal water regions, but also successfully extend the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides, and thereby, aerosol impacts on regional air quality and climate are expected to be significant.


2015 ◽  
Vol 8 (10) ◽  
pp. 4083-4110 ◽  
Author(s):  
R. C. Levy ◽  
L. A. Munchak ◽  
S. Mattoo ◽  
F. Patadia ◽  
L. A. Remer ◽  
...  

Abstract. To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March–April–May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.


2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Sanja Grgurić ◽  
Josip Križan ◽  
Goran Gašparac ◽  
Oleg Antonić ◽  
Zdravko Špirić ◽  
...  

AbstractThis study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution over a period of 5 years (2008–2012), and investigates the applicability of satellite AOD data for ground PM10 mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are unknowns that cause uncertainties in this relationship.The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coincident MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables (predictors, estimators) included season, cloud fraction, and meteorological parameters — including temperature, air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height — using meteorological data from WRF (Weather Research and Forecast) model.It has been found that 1) a univariate linear regression model fails at explaining the data variability well which suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with multivariate linear modeling and a neural network approach, using additional independent variables.


2009 ◽  
Vol 26 (4) ◽  
pp. 704-718 ◽  
Author(s):  
Bart De Paepe ◽  
Steven Dewitte

Abstract The authors present a new algorithm to retrieve aerosol optical depth (AOD) over a desert using the window channels centered at 8.7, 10.8, and 12.0 μm of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat Second Generation satellite. The presence of dust aerosols impacts the longwave outgoing radiation, allowing the aerosols over the desert surfaces to be detected in the thermal infrared (IR) wavelengths. To retrieve the aerosol properties over land, the surface contribution to the satellite radiance measured at the top of the atmosphere has to be taken into account. The surface radiation depends on the surface temperature, which is characterized by a strong diurnal variation over the desert, and the surface emissivity, which is assumed to be constant over a time span of 24 h. The surface emissivity is based on clear-sky observations that are corrected for atmospheric absorption and emission. The clear-sky image is a composite of pixels that is characterized by the highest brightness temperature (BT) of the SEVIRI channel at 10.8 μm, and by a negative BT difference between the channels at 8.7 and 10.8 μm. Because of the lower temperatures of clouds and aerosols compared to clear-sky conditions, the authors assume that the selected pixel values are obtained for a clear-sky day. A forward model is used to simulate the thermal IR radiation transfer in the dust layer. The apparent surface radiation for the three window channels in the presence of aerosols is calculated as a function of the surface emissivity and the surface temperature, the aerosol layer temperature, and the AOD for different aerosol loadings. From these simulations two emissivity ratios, which are stored in lookup tables (LUT), are calculated. The retrieval algorithm consists of processing the clear-sky image and computing the surface emissivity, processing the instantaneous image, and computing the apparent surface radiation for the three window channels. The two emissivity ratios are computed using the radiances at 8.7 and 10.8 μm and at 8.7 and 12.0 μm, respectively. The SEVIRI AOD is obtained by the inversion of these emissivity ratios using the corresponding LUT. The algorithm is applied to a minor dust event over the Sahara between 19 and 22 June 2007. For the validation the SEVIRI AOD is compared with the AOD from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) along the satellite track.


2010 ◽  
Vol 3 (5) ◽  
pp. 4091-4167 ◽  
Author(s):  
E. J. Hyer ◽  
J. S. Reid ◽  
J. Zhang

Abstract. MODIS Collection 5 retrieved aerosol optical depth (AOD) over land (MOD04/MYD04) was evaluated using 4 years of matching AERONET observations, to assess its suitability for aerosol data assimilation in numerical weather prediction models. Examination of errors revealed important sources of variation in random errors (e.g., atmospheric path length, scattering angle "hot spot"), and systematic biases (e.g., snow and cloud contamination, surface albedo bias). A set of quality assurance (QA) filters was developed to avoid conditions with potential for significant AOD error. An empirical correction for surface boundary condition using the MODIS 16-day albedo product captured 25% of the variability in the site mean bias at low AOD. A correction for regional microphysical bias using the AERONET fine/coarse partitioning information increased the global correlation between MODIS and AERONET from r2=0.62–0.65 to r2=0.71–0.73. Application of these filters and corrections improved the global fraction of MODIS AOD within (0.05±20%) of AERONET to 77%, up from 67% using only built-in MODIS QA. The compliant fraction in individual regions was improved by as much as 20% (South America). An aggregated Level 3 product for use in a data assimilation system is described, along with a prognostic error model to estimate uncertainties on a per-observation basis. The new filtered and corrected Level 3 product has improved performance over built-in MODIS QA with less than a 15% reduction in overall data available for data assimilation.


2016 ◽  
Vol 9 (11) ◽  
pp. 4257-4272
Author(s):  
Antigoni Panagiotopoulou ◽  
Panagiotis Charalampidis ◽  
Christos Fountoukis ◽  
Christodoulos Pilinis ◽  
Spyros N. Pandis

Abstract. The ability of chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during the photochemically active period of May 2008 (EUCAARI campaign) is evaluated. Periods with high dust or sea-salt levels are excluded, so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. However, the model overestimates the AOD over northern Europe, most probably due to an overestimation of organic aerosol and sulfates. At the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors appear to be related to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state. The screening of the satellite retrievals for periods with high dust (or coarse particles in general) concentrations as well as the combination of the MODIS and AERONET datasets lead to more robust conclusions about the ability of the model to simulate the secondary aerosol components that dominate the AOD during this period.


2011 ◽  
Vol 11 (4) ◽  
pp. 12519-12560
Author(s):  
H. Zhang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
S. Kondragunta ◽  
I. Laszlo ◽  
...  

Abstract. Aerosol optical depth (AOD) retrieval from geostationary satellites has high temporal resolution compared to the polar orbiting satellites and thus enables us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosol and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) at channel 1 of GOES is proportional to seasonal average BRDF in the 2.1 μm channel from MODIS. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of the AOD and surface reflectance retrievals are evaluated through comparison against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US. They are comparable to the GASP retrievals in the eastern-central sites and are more accurate than GASP retrievals in the western sites. In the western US where surface reflectance is high, the new algorithm also produces larger AOD retrieval coverage than both GASP and MODIS.


Sign in / Sign up

Export Citation Format

Share Document