scholarly journals Towards the identification of molecular constituents associated with the surfaces of isoprene-derived secondary organic aerosol (SOA) particles

2014 ◽  
Vol 14 (5) ◽  
pp. 2303-2314 ◽  
Author(s):  
C. J. Ebben ◽  
B. F. Strick ◽  
M. A. Upshur ◽  
H. M. Chase ◽  
J. L. Achtyl ◽  
...  

Abstract. Secondary organic aerosol (SOA) particle formation ranks among the least understood chemical processes in the atmosphere, rooted in part in the lack of knowledge about chemical composition and structure at the particle surface, and little availability of reference compounds needed for benchmarking and chemical identification in pure and homogenous form. Here, we synthesize and characterize SOA particle constituents consisting of the isoprene oxidation products α-, δ-, and cis- and trans-β-IEPOX (isoprene epoxide), as well as syn- and anti-2-methyltetraol. Paying particular attention to their phase state (condensed vs. vapor), we carry out a surface-specific and orientationally selective chemical analysis by vibrational sum frequency generation (SFG) spectroscopy of these compounds in contact with a fused silica window. Comparison to the vibrational SFG spectra of synthetic isoprene-derived SOA particle material prepared at the Harvard Environmental Chamber yields a plausible match with trans-β-IEPOX, suggesting it is an abundant species on their surfaces, while the other species studied here, if present, appear to be SFG inactive and thus likely to be localized in a centrosymmetric environment, e.g., the particle bulk. No match is found for authentic SOA particle material collected at the site of the Amazonian Aerosol Characterization Experiment (AMAZE-08) with the surface SFG spectra of the compounds surveyed here, yet we cannot rule out this mismatch being attributable to differences in molecular orientation. The implications of our findings for SOA formation are discussed in the context of condensational particle growth and reactivity.

2021 ◽  
Vol 7 (13) ◽  
pp. eabe2952
Author(s):  
Houssni Lamkaddam ◽  
Josef Dommen ◽  
Ananth Ranjithkumar ◽  
Hamish Gordon ◽  
Günther Wehrle ◽  
...  

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).


2020 ◽  
Vol 20 (10) ◽  
pp. 5995-6014 ◽  
Author(s):  
Camille Mouchel-Vallon ◽  
Julia Lee-Taylor ◽  
Alma Hodzic ◽  
Paulo Artaxo ◽  
Bernard Aumont ◽  
...  

Abstract. The GoAmazon 2014/5 field campaign took place in Manaus, Brazil, and allowed the investigation of the interaction between background-level biogenic air masses and anthropogenic plumes. We present in this work a box model built to simulate the impact of urban chemistry on biogenic secondary organic aerosol (SOA) formation and composition. An organic chemistry mechanism is generated with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate the explicit oxidation of biogenic and anthropogenic compounds. A parameterization is also included to account for the reactive uptake of isoprene oxidation products on aqueous particles. The biogenic emissions estimated from existing emission inventories had to be reduced to match measurements. The model is able to reproduce ozone and NOx for clean and polluted situations. The explicit model is able to reproduce background case SOA mass concentrations but does not capture the enhancement observed in the urban plume. The oxidation of biogenic compounds is the major contributor to SOA mass. A volatility basis set (VBS) parameterization applied to the same cases obtains better results than GECKO-A for predicting SOA mass in the box model. The explicit mechanism may be missing SOA-formation processes related to the oxidation of monoterpenes that could be implicitly accounted for in the VBS parameterization.


2007 ◽  
Vol 7 (3) ◽  
pp. 9053-9092 ◽  
Author(s):  
C. R. Hoyle ◽  
T. Berntsen ◽  
G. Myhre ◽  
I. S. A. Isaksen

Abstract. The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 76 Tg yr−1 by allowing semi-volatile species to condense on ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated, raising the possibility of an unaccounted for SOA source. Allowing SOA to form on ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to almost 9% of the total production. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas. This study underscores the need for SOA to be represented in a more realistic way in global aerosol models in order to better reproduce observations of organic aerosol burdens in industrialised and biomass burning regions.


2015 ◽  
Vol 1 (2) ◽  
pp. 6-10 ◽  
Author(s):  
Catherine A. Gordon ◽  
Jianhuai Ye ◽  
Arthur W.H. Chan

Secondary Organic Aerosol (SOA) forms in the atmosphere when semi-volatile oxidation products from biogenic and anthropogenic hydrocarbons condense onto atmospheric particulate matter. Climate models assume that oxidation products and preexisting organic aerosol form a well-mixed particle and enhance condensation, and, as a result, predict that future increases in anthropogenic primary organic aerosol (POA) will cause a significant increase in SOA. However, recent experiments performed at low humidity (<10%) demonstrate a single-phase particle does not always form, challenging the validity of model assumptions. In this work, we investigate the formation of SOA at atmospherically relevant humidities (55 - 65%) and examine this mixing assumption. We hypothesized that humidity leads to decreased viscosity and shorter mixing timescales, which is favorable for aerosol mixing. Here, α-pinene, a biogenic volatile organic compound is oxidized with ozone in a flow tube reactor in the presence of different organic aerosol seeds. Increased humidity did not enhance SOA formation with erythritol or squalane seed as hypothesized, implying that these compounds do not mix with α-pinene SOA in the range of humidities studied (55 – 65%). Yield enhancements were observed with tetraethylene glycol seed, demonstrating interaction between the SOA and seed. These observations suggest increased humidity does not promote mixing between the oxidation products and POA and highlight the need to fully understand the aerosol phase state in the atmosphere in order to better parameterize SOA formation and accurately predict future changes in air quality.


2018 ◽  
Author(s):  
Ariana Gray Bé ◽  
Hilary M. Chase ◽  
Liu, Yangdongliu ◽  
Mary Alice Upshur ◽  
Zhang, Yue ◽  
...  

<p>By integrating organic synthesis, secondary organic aerosol synthesis and collection, DFT calculations, and vibrational sum frequency generation spectroscopy, we identify close spectral matches between the surface vibrational spectra of β-caryophyllene-derived secondary organic material and those of β-caryophyllene aldehyde and β-caryophyllonic acid at various interfaces. Combined with the record high surface tension depression described previously for these same oxidation products, we discuss possibilities for an intrinsically chemical origin for cloud activation by terpene-derived surfactants. Although the present study does not unequivocally identify the synthesized and analyzed oxidation products on the β-caryophyllenederived SOM surfaces, these two compounds appear to be the most surface active out of the series, and have also been foci of previous β-caryophyllene field and laboratory studies.</p><p>An orientation analysis by phase-resolved SFG spectroscopy reveals a “pincer-like” configuration of the β-caryophyllene oxidation products, albeit on a model quartz surface, that somewhat resembles the orientation of inverse double-tailed surfactants at the surfaces biological systems. The structural information suggests that the less polar moiety of a surface-localized oxidation product, such as those studied here, may be the first site-of-contact for a gas-phase molecule approaching an SOA particle containing surface-active β-caryophyllene oxidation products.</p>


2021 ◽  
Vol 21 (6) ◽  
pp. 5137-5149 ◽  
Author(s):  
Manpreet Takhar ◽  
Yunchun Li ◽  
Arthur W. H. Chan

Abstract. Cooking emissions account for a major fraction of urban organic aerosol. It is therefore important to understand the atmospheric evolution in the physical and chemical properties of organic compounds emitted from cooking activities. In this work, we investigate the formation of secondary organic aerosol (SOA) from oxidation of gas-phase organic compounds from heated cooking oil. The chemical composition of cooking SOA is analyzed using thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). While the particle-phase composition of SOA is a highly complex mixture, we adopt a new method to achieve molecular speciation of the SOA. All the GC-elutable material is classified by the constituent functional groups, allowing us to provide a molecular description of its chemical evolution upon oxidative aging. Our results demonstrate an increase in average oxidation state (from −0.6 to −0.24) and decrease in average carbon number (from 5.2 to 4.9) with increasing photochemical aging of cooking oil, suggesting that fragmentation reactions are key processes in the oxidative aging of cooking emissions within 2 d equivalent of ambient oxidant exposure. Moreover, we estimate that aldehyde precursors from cooking emissions account for a majority of the SOA formation and oxidation products. Overall, our results provide insights into the atmospheric evolution of cooking SOA, a majority of which is derived from gas-phase oxidation of aldehydes.


2014 ◽  
Vol 14 (7) ◽  
pp. 10543-10596 ◽  
Author(s):  
C. Denjean ◽  
P. Formenti ◽  
B. Picquet-Varrault ◽  
E. Pangui ◽  
P. Zapf ◽  
...  

Abstract. Secondary Organic Aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM simulation chamber. The formation and ageing of the SOA were studied by following their optical, hygroscopic and chemical properties. The optical properties investigated by determining the particle Complex Refractive Index (CRI). The hygroscopicity was quantified by measuring the effect of RH on particle size (Growth Factor, GF) and scattering coefficient (f(RH)). The oxygen to carbon (O : C) atomic ratio of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition in CESAM. The real CRI at 525 nm wavelength decreased from 1.43–1.60 (±0.02) to 1.32–1.38 (±0.02) during the SOA formation. The decrease in real CRI correlates with a decrease in the O : C ratio of SOA from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF stayed roughly constant over the reaction time, with values of 1.02–1.07 (±0.02) at 90% (±4.2) RH. Simultaneous measurements of O : C ratio of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but with less oxidised species at the surface which would limit the water adsorption onto particle. In addition, an apparent change of both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 16 h reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.


2009 ◽  
Vol 9 (2) ◽  
pp. 8857-8902 ◽  
Author(s):  
A. W. Rollins ◽  
A. Kiendler-Scharr ◽  
J. Fry ◽  
T. Brauers ◽  
S. S. Brown ◽  
...  

Abstract. Alkyl nitrates and secondary organic aerosol (SOA) produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR chamber. We find the yield of nitrates is 70±8% from the isoprene+NO3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO3 is 40±20%. We find an effective rate constant for reaction of NO3 with the group of first generation oxidation products to be 7×10−14 cm3 s−1. At the low total organic aerosol concentration in the chamber (max ≈0.6 μg m−3) we observed a mass yield (ΔSOA mass/Δisoprene mass) of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.2% while the further oxidation of the initial products leads to a yield of 10% (defined as ΔSOA/Δisoprene2x where Δisoprene2x is the mass of isoprene which reacted twice with NO3). The SOA yield of 10% is consistent with equilibrium partitioning of highly functionalized C5 products of isoprene oxidation.


Sign in / Sign up

Export Citation Format

Share Document