scholarly journals Evaluating secondary inorganic aerosols in three dimensions

2016 ◽  
Vol 16 (16) ◽  
pp. 10651-10669 ◽  
Author(s):  
Keren Mezuman ◽  
Susanne E. Bauer ◽  
Kostas Tsigaridis

Abstract. The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3 ∕ NH4+ partitioning which affects the HNO3 ∕ NO3− partitioning.

2016 ◽  
Author(s):  
Keren Mezuman ◽  
Susanne E. Bauer ◽  
Kostas Tsigaridis

Abstract. The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the 3-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e. sulfate, ammonium and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000–2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model, influenced by strong stratosphere-troposphere exchange. Heterogeneous reactions on dust surfaces is an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4+ partitioning which affects the HNO3/NO3− partitioning.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E247-E265 ◽  
Author(s):  
Paul W. J. Glover

Archie’s law has been the standard method for relating the conductivity of a clean reservoir rock to its porosity and the conductivity of its pore fluid for more than [Formula: see text]. However, it is applicable only when the matrix is nonconducting. A modified version that allows a conductive matrix was published in 2000. A generalized form of Archie’s law is studied for any number of phases for which the classical Archie’s law and modified Archie’s law for two phases are special cases. The generalized Archie’s law contains a phase conductivity, a phase volume fraction, and phase exponent for each of its [Formula: see text] phases. The connectedness of each of the phases is considered, and the principle of conservation of connectedness in a three-dimensional multiphase mixture is introduced. It is confirmed that the general law is formally the same as the classical Archie’s law and modified Archie’s law for one and two conducting phases, respectively. The classical second Archie’s law is compared with the generalized law, which leads to the definition of a saturation exponent for each phase. This process has enabled the derivation of relationships between the phase exponents and saturation exponents for each phase. The relationship between percolation theory and the generalized model is also considered. The generalized law is examined in detail for two and three phases and semiquantitatively for four phases. Unfortunately, the law in its most general form is very difficult to prove experimentally. Instead, numerical modeling in three dimensions is carried out to demonstrate that it behaves well for a system consisting of four interacting conducting phases.


2021 ◽  
Vol 14 (6) ◽  
pp. 3813-3841
Author(s):  
Phuc T. M. Ha ◽  
Ryoki Matsuda ◽  
Yugo Kanaya ◽  
Fumikazu Taketani ◽  
Kengo Sudo

Abstract. This study uses a chemistry–climate model CHASER (MIROC) to explore the roles of heterogeneous reactions (HRs) in global tropospheric chemistry. Three distinct HRs of N2O5, HO2, and RO2 are considered for surfaces of aerosols and cloud particles. The model simulation is verified with EANET and EMEP stationary observations; R/V Mirai ship-based data; ATom1 aircraft measurements; satellite observations by OMI, ISCCP, and CALIPSO-GOCCP; and reanalysis data JRA55. The heterogeneous chemistry facilitates improvement of model performance with respect to observations for NO2, OH, CO, and O3, especially in the lower troposphere. The calculated effects of heterogeneous reactions cause marked changes in global abundances of O3 (−2.96 %), NOx (−2.19 %), CO (+3.28 %), and global mean CH4 lifetime (+5.91 %). These global effects were contributed mostly by N2O5 uptake onto aerosols in the middle troposphere. At the surface, HO2 uptake gives the largest contributions, with a particularly significant effect in the North Pacific region (−24 % O3, +68 % NOx, +8 % CO, and −70 % OH), mainly attributable to its uptake onto clouds. The RO2 reaction has a small contribution, but its global mean negative effects on O3 and CO are not negligible. In general, the uptakes onto ice crystals and cloud droplets that occur mainly by HO2 and RO2 radicals cause smaller global effects than the aerosol-uptake effects by N2O5 radicals (+1.34 % CH4 lifetime, +1.71 % NOx, −0.56 % O3, +0.63 % CO abundances). Nonlinear responses of tropospheric O3, NOx, and OH to the N2O5 and HO2 uptakes are found in the same modeling framework of this study (R>0.93). Although all HRs showed negative tendencies for OH and O3 levels, the effects of HR(HO2) on the tropospheric abundance of O3 showed a small increment with an increasing loss rate. However, this positive tendency turns to reduction at higher rates (>5 times). Our results demonstrate that the HRs affect not only polluted areas but also remote areas such as the mid-latitude sea boundary layer and upper troposphere. Furthermore, HR(HO2) can bring challenges to pollution reduction efforts because it causes opposite effects between NOx (increase) and surface O3 (decrease).


2021 ◽  
Author(s):  
Adriana Paluszny ◽  
Robin N. Thomas ◽  
M. Cristina Saceanu ◽  
Robert W. Zimmerman

<p>A finite-element based, quasi-static growth algorithm models mixed mode concurrent fracture growth in three dimensions, leading to the formation of non-planar arrays and networks. To model the fully coupled THM model, equations describing mechanical deformation as well as heat transfer in the matrix and in the fractures are introduced in the formulation, simultaneously accounting for the effect of fluid flow and stress-strain response. This results in five separate, but two-way coupled model equations: a thermoporoelastic mechanical model; two fluid flow equations, one for the rock matrix and one for the fractures; two heat transfer equations, similarly for both the matrix and fractures. Fractures are represented explicitly as discrete surfaces embedded within a volumetric domain [1]. Growth is computed as a set of vectors that modify the geometry of a fracture by accruing new fracture surfaces in response to brittle deformation. Fracture tip stress intensity factors drive fracture growth. This growth methodology is validated against analytical solutions for fractures under compression and tension [2]. Thermal effects on the apertures and growth patterns will be presented. Isolated fracture geometries are compared with selected experimental results on brittle media. Accurate growth is demonstrated for domains discretised by refined and coarse volumetric meshes. Fracture and volume-based growth rates are shown to modify fracture interaction patterns. Two-dimensional cut-plane views of fracture networks show how fractures would appear on the surface of the studied volume.</p><p><strong>REFERENCES</strong></p><p>[1] N. Thomas, A. Paluszny and R. W. Zimmerman. Growth of three-dimensional fractures, arrays, and networks in brittle rocks under tension and compression. Computers and Geotechnics, 2020. doi: 10.1016/j.compgeo.2020.103447</p><p>[2] Paluszny and R. W. Zimmerman. Numerical fracture growth modeling using smooth surface geometric deformation. Eng. Fract. Mech., 108, 19-36, 2013. doi: 10.1016/j.engfracmech.2013.04.012</p>


Author(s):  
Mohammad K Hassanzadeh-Aghdam ◽  
Mohammad J Mahmoodi ◽  
Reza Ansari

A three-dimensional micromechanics-based analytical model is developed to investigate the influence of interphase on the thermo-mechanical properties of three-phase composites. The representative volume element (RVE) of composites is extended to c × r × h cells in three dimensions and the RVE consists of three phases including filler, matrix and interphase. The arrangement state of filler within the matrix materials is assumed to be random with uniform distribution. Fillers are surrounded by the interphase in the whole composite. The effects of interphase such as its thickness and stiffness on the thermo-mechanical properties of composite with various aspect ratios of filler are studied. The results illustrate that while the effects of interphase is significant for composites with randomly distributed spherical particles, it turns to be less effective as the aspect ratio of filler of composite increases. Moreover, the results demonstrate that the effect of interphase on the thermo-mechanical properties of fibrous composites in the transverse direction is more significant than that of fiber composites in the longitudinal direction.


Author(s):  
Peter M. Higgins

‘Determinants and matrices’ explains that in three dimensions, the absolute value of the determinant det(A) of a linear transformation represented by the matrix A is the multiplier of volume. The columns of A are the images of the position vectors of the sides of the unit cube and they define a three-dimensional version of a parallelogram, a parallelepiped, the volume of which is |det(A)|. It goes on to describe the properties and applications of determinants to networks (using the Kirchhoff matrix); Cramer’s Rule; eigenvalues; and eigenvectors, which are fundamental in linear mathematics. Other key topics in matrix theory—similarity, diagonalization, and factorization of matrices—are also discussed.


2005 ◽  
Vol 127 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Chunlou Li ◽  
Tao Xie ◽  
Maysam Pournik ◽  
Ding Zhu ◽  
A. D. Hill

We have developed a fine-scale model of the sandstone core acid flooding process by solving acid and mineral balance equations for a fully three-dimensional flow field that changed as acidizing proceeded. The initial porosity and mineralogy field could be generated in a correlated manner in three dimensions; thus, a laminated sandstone could be simulated. The model has been used to simulate sandstone acidizing coreflood conditions, with a 1in.diam by 2in. long core represented by 8000 grid blocks, each having different initial properties. Results from this model show that the presence of small-scale heterogeneities in a sandstone has a dramatic impact on the acidizing process. Flow field heterogeneities cause acid to penetrate much farther into the formation than would occur if the rock were homogeneous, as is assumed by standard models. When the porosity was randomly distributed (sampled from a normal distribution), the acid penetrated up to twice as fast as in the homogeneous case. When the porosity field is highly correlated in the axial direction, which represents a laminated structure, acid penetrates very rapidly into the matrix along the high-permeability streaks, reaching the end of the simulated core as much as 17 times faster than for a homogeneous case.


2020 ◽  
Author(s):  
Phuc T. M. Ha ◽  
Fumikazu Taketani ◽  
Yugo Kanaya ◽  
Ryoki Matsuda ◽  
Kengo Sudo

Abstract. This study uses a chemistry-climate model CHASER (MIROC) to explore the roles of heterogeneous reactions (HRs) in global tropospheric chemistry. Three distinct HRs of N2O5, HO2, and RO2 are considered for surfaces of aerosols and cloud particles. The model simulation is verified with EANET and EMEP stationary observations, R/V MIRAI ship-based data, ATOM1 aircraft measurements, satellite observations by OMI, ISCCP, and CALIPSO-GOCCP, and reanalysis data JRA55. The heterogeneous chemistry facilitates improvement of model performance with respect to observations for NO2, OH, CO, and O3, especially in the lower troposphere. The calculated effects of heterogeneous reactions cause marked changes in global abundances of O3 (−3 %), NOx (−2.2 %), CO (+3.3 %), and global mean CH4 lifetime (+5.9 %). These global effects were contributed mostly by N2O5 uptake onto aerosols in the middle troposphere. At the surface, HO2 uptake gives the largest contributions, with a particularly significant effect in the North Pacific region (−24% O3, +68 % NOx, +8 % CO, and −70 % OH), mainly attributable to its uptake onto clouds. The RO2 reaction has a small contribution, but its global-mean negative effect on O3 is not negligible. In general, the uptakes onto ice crystals and cloud droplets that occur mainly by HO2 and RO2 radicals cause smaller global effects than the aerosol-uptake effects by N2O5 radicals (+1.34 % CH4 lifetime, +1.71 % NOx, −0.56 % O3, +0.63 % CO abundances). Nonlinear responses of tropospheric O3, NOx, and OH to the N2O5 and HO2 uptakes are found in the same modelling framework of this study (R > 0.93). Although all HRs showed negative tendencies for OH and O3 levels, the effects of HR(HO2) on the tropospheric abundance of O3 showed a small increment with an increasing loss rate. However, this positive tendency turns to reduction at higher rates (> 5 times). Our results demonstrate that the HRs affect not only polluted areas but also remote areas such as the mid-latitude sea boundary layer and upper troposphere. Furthermore, HR(HO2) can bring challenges to pollution reduction efforts because it causes opposite effects between NOx (increase) and surface O3 (decrease).


2021 ◽  
Author(s):  
Dominika Hájková ◽  
Petr Šácha ◽  
Petr Pišoft ◽  
Roland Eichinger

<p>Internal gravity waves (GWs) are a naturally occurring and intermittent phenomenon in the atmosphere. GWs can propagate horizontally and vertically and are important for atmospheric dynamics, influencing the atmospheric thermal and dynamical structure. Research on GWs is connected with some of the most challenging issues of Earth climate and atmospheric science. Consideration of GW-related processes is necessary for a proper description and modelling of the middle and upper atmosphere. However, as GWs exist on scales from a few to thousands of kilometers, they cannot be fully resolved by general circulation models (GCMs) and hence have to be parameterized. Although recently satellite and reanalysis datasets with improved resolution and novel analysis methods together with high-resolution atmospheric models have been tightening the constraints for GW parameterizations in GCMs, the parameterized GW effects still bear a significant margin of uncertainty.</p> <p>To quantify this uncertainty, we analyze the three-dimensional distribution and interannual variability of orographic gravity wave drag (OGWD) in chemistry-climate model simulations. For this, we use a set of AMIP simulations produced within the CMIP6 activity. In particular, we focus on the intermodel spread in the vertical and horizontal OGWD distribution. The different models generaly agree on the areas of the OGWD hotspots. However, in all these regions we find considerable intermodel differences in OGWD magnitude as well as in the altitude of the strongest GW dissipation. In this presentation, we show our findings and discuss possible explanations for the intermodel differences, like different parametrization schemes and choices of tunable parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document