scholarly journals A new downscaling method for sub-grid turbulence modeling

2017 ◽  
Vol 17 (11) ◽  
pp. 6531-6546
Author(s):  
Lucie Rottner ◽  
Christophe Baehr ◽  
Fleur Couvreux ◽  
Guylaine Canut ◽  
Thomas Rieutord

Abstract. In this study we explore a new way to model sub-grid turbulence using particle systems. The ability of particle systems to model small-scale turbulence is evaluated using high-resolution numerical simulations. These high-resolution data are averaged to produce a coarse-grid velocity field, which is then used to drive a complete particle-system-based downscaling. Wind fluctuations and turbulent kinetic energy are compared between the particle simulations and the high-resolution simulation. Despite the simplicity of the physical model used to drive the particles, the results show that the particle system is able to represent the average field. It is shown that this system is able to reproduce much finer turbulent structures than the numerical high-resolution simulations. In addition, this study provides an estimate of the effective spatial and temporal resolution of the numerical models. This highlights the need for higher-resolution simulations in order to evaluate the very fine turbulent structures predicted by the particle systems. Finally, a study of the influence of the forcing scale on the particle system is presented.

2016 ◽  
Author(s):  
L. Rottner ◽  
C. Baehr ◽  
F. Couvreux ◽  
G. Canut ◽  
T. Rieutord

Abstract. In this study we explore a new way to model sub-grid turbulence using particle systems. The ability of particle systems to model small scale turbulence is evaluated using high resolution numerical simulations. These high-resolution simulations have been performed with the research atmospheric model Meso-NH and averaged at larger scale from which a complete downscaling experience, via a particle system, have been performed. The particle simulations are compared to the high-resolution simulation for the representation of the wind fluctuations and the turbulent kinetic energy. Despite the simplicity of the physical model used to drive the particles, the results show that particle system is able to represent the average field. It is shown that this system is able to reproduce much finer turbulent structures than the numerical high-resolution simulations. In addition, this study provides an estimate of the effective spatial and temporal resolution of the numerical models. This highlights the need for higher resolution simulations to be able to evaluate the very fine turbulent structures predicted by the particle systems. Eventually a study of the influence of the forcing scale on the particle system is presented.


2018 ◽  
Vol 99 (5) ◽  
pp. 1027-1040 ◽  
Author(s):  
D. R. Jackson ◽  
A. Gadian ◽  
N. P. Hindley ◽  
L. Hoffmann ◽  
J. Hughes ◽  
...  

AbstractGravity waves (GWs) play an important role in many atmospheric processes. However, the observation-based understanding of GWs is limited, and representing them in numerical models is difficult. Recent studies show that small islands can be intense sources of GWs, with climatologically significant effects on the atmospheric circulation. South Georgia, in the South Atlantic, is a notable source of such “small island” waves. GWs are usually too small scale to be resolved by current models, so their effects are represented approximately using resolved model fields (parameterization). However, the small-island waves are not well represented by such parameterizations, and the explicit representation of GWs in very-high-resolution models is still in its infancy. Steep islands such as South Georgia are also known to generate low-level wakes, affecting the flow hundreds of kilometers downwind. These wakes are also poorly represented in models.We present results from the South Georgia Wave Experiment (SG-WEX) for 5 July 2015. Analysis of GWs from satellite observations is augmented by radiosonde observations made from South Georgia. Simulations were also made using high-resolution configurations of the Met Office Unified Model (UM). Comparison with observations indicates that the UM performs well for this case, with realistic representation of GW patterns and low-level wakes. Examination of a longer simulation period suggests that the wakes generally are well represented by the model. The realism of these simulations suggests they can be used to develop parameterizations for use at coarser model resolutions.


2020 ◽  
Vol 8 (11) ◽  
pp. 939
Author(s):  
Sarah Cryer ◽  
Filipa Carvalho ◽  
Terry Wood ◽  
James Asa Strong ◽  
Peter Brown ◽  
...  

The interface between land and sea is a key environment for biogeochemical carbon cycling, yet these dynamic environments are traditionally under sampled. Logistical limitations have historically precluded a comprehensive understanding of coastal zone processes, including ocean acidification. Using sensors on autonomous platforms is a promising approach to enhance data collection in these environments. Here, we evaluate the use of an autonomous surface vehicle (ASV), the C-Worker 4 (CW4), equipped with pH and pCO2 sensors and with the capacity to mount additional sensors for up to 10 other parameters, for the collection of high-resolution data in shallow coastal environments. We deployed the CW4 on two occasions in Belizean coastal waters for 2.5 and 4 days, demonstrating its capability for high-resolution spatial mapping of surface coastal biogeochemistry. This enabled the characterisation of small-scale variability and the identification of sources of low pH/high pCO2 waters as well as identifying potential controls on coastal pH. We demonstrated the capabilities of the CW4 in both pre-planned “autonomous” mission mode and remote “manually” operated mode. After documenting platform behaviour, we provide recommendations for further usage, such as the ideal mode of operation for better quality pH data, e.g., using constant speed. The CW4 has a high power supply capacity, which permits the deployment of multiple sensors sampling concurrently, a shallow draught, and is highly controllable and manoeuvrable. This makes it a highly suitable tool for observing and characterising the carbonate system alongside identifying potential drivers and controls in shallow coastal regions.


2005 ◽  
Vol 127 (5) ◽  
pp. 936-944 ◽  
Author(s):  
G. de With ◽  
A. E. Holdø

The use of large eddy simulation (LES) is computationally intensive and various studies demonstrated the considerable range of vortex scales to be resolved in an LES type of simulation. The purpose of this study is to investigate the use of a dynamic grid adaptation (DGA) algorithm. Despite many developments related to adaptive methods and adaptive grid strategies, the use of DGA in the context of turbulence modeling is still not well understood, and various profound problems with DGA in relation to turbulence modeling are still present. The work presented in this paper focuses on the numerical modeling of flow around a circular cylinder in the sub-critical flow regime at a Reynolds number of 3.9∙103. LES simulations with conventional mesh and DGA have been performed with various mesh sizes, refinement criteria and re-meshing frequency, to investigate the effects of re-meshing on the flow field prediction. The results indicate that the turbulent flow field is sensitive to modifications in the mesh and re-meshing frequency, and it is suggested that the re-meshing in the unsteady flow region is affecting the onset of small scale flow motions in the free shear layer.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 376 ◽  
Author(s):  
Chengwu Zhao ◽  
Junqiang Song ◽  
Hongze Leng ◽  
Juan Zhao

Precise center-detection of tropical cyclones (TCs) is critical for dynamic analysis in high resolution model data. The existence of both smaller scale perturbations and larger scale circulations could reduce the accuracy of center positioning. In this study, an objective center-finding algorithm is developed based on a two-dimensional Fourier filter and a vorticity centroid algorithm. This proposed algorithm is able to automatically adjust its parameters according to the scale of the target vortex instead of using artificially prescribed parameters in previous research. What’s more, this new algorithm has been optimized and validated by a hundred idealized vortexes with different sizes and small-scale perturbations. A high-resolution simulation of Typhoon Soudelor (2015) was used to evaluate the performance of the new algorithm, and the proposed objective center-finding algorithm was found able to detect a precise and reliable center.


2016 ◽  
Vol 10 (3) ◽  
pp. 1003-1020 ◽  
Author(s):  
Anna Ruth W. Halberstadt ◽  
Lauren M. Simkins ◽  
Sarah L. Greenwood ◽  
John B. Anderson

Abstract. Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.


2015 ◽  
Vol 781 ◽  
pp. 727-744 ◽  
Author(s):  
R. A. Antonia ◽  
S. L. Tang ◽  
L. Djenidi ◽  
L. Danaila

The variation of $S$, the velocity derivative skewness, with the Taylor microscale Reynolds number $\mathit{Re}_{{\it\lambda}}$ is examined for different turbulent flows by considering the locally isotropic form of the transport equation for the mean energy dissipation rate $\overline{{\it\epsilon}}_{iso}$. In each flow, the equation can be expressed in the form $S+2G/\mathit{Re}_{{\it\lambda}}=C/\mathit{Re}_{{\it\lambda}}$, where $G$ is a non-dimensional rate of destruction of $\overline{{\it\epsilon}}_{iso}$ and $C$ is a flow-dependent constant. Since $2G/\mathit{Re}_{{\it\lambda}}$ is found to be very nearly constant for $\mathit{Re}_{{\it\lambda}}\geqslant 70$, $S$ should approach a universal constant when $\mathit{Re}_{{\it\lambda}}$ is sufficiently large, but the way this constant is approached is flow dependent. For example, the approach is slow in grid turbulence and rapid along the axis of a round jet. For all the flows considered, the approach is reasonably well supported by experimental and numerical data. The constancy of $S$ at large $\mathit{Re}_{{\it\lambda}}$ has obvious ramifications for small-scale turbulence research since it violates the modified similarity hypothesis introduced by Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82–85) but is consistent with the original similarity hypothesis (Kolmogorov, Dokl. Akad. Nauk SSSR, vol. 30, 1941, pp. 299–303).


2021 ◽  
Vol 13 (9) ◽  
pp. 4437-4464
Author(s):  
Bernd Schalge ◽  
Gabriele Baroni ◽  
Barbara Haese ◽  
Daniel Erdal ◽  
Gernot Geppert ◽  
...  

Abstract. Coupled numerical models, which simulate water and energy fluxes in the subsurface–land-surface–atmosphere system in a physically consistent way, are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models may be regarded as a proxy of the real world, provided they are run at sufficiently high resolution and incorporate the most important processes. Such a simulated reality can be used to test hypotheses on the functioning of the coupled terrestrial system. Coupled simulation systems, however, face severe problems caused by the vastly different scales of the processes acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of their realism. We used the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the meteorological Consortium for Small-scale Modeling (COSMO) model, the land-surface Community Land Model (CLM), and the subsurface ParFlow model, to generate a simulated catchment for a regional terrestrial system mimicking the Neckar catchment in southwest Germany, the virtual Neckar catchment. Simulations for this catchment are made for the period 2007–2015 and at a spatial resolution of 400 m for the land surface and subsurface and 1.1 km for the atmosphere. Among a discussion of modeling challenges, the model performance is evaluated based on observations covering several variables of the water cycle. We find that the simulated catchment behaves in many aspects quite close to observations of the real Neckar catchment, e.g., concerning atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become apparent, both in the ability of the model to correctly simulate some processes which still need improvement, such as overland flow, and in the realism of some observation operators like the satellite-based soil moisture sensors. The whole raw dataset is available for interested users. The dataset described here is available via the CERA database (Schalge et al., 2020): https://doi.org/10.26050/WDCC/Neckar_VCS_v1.


1993 ◽  
Vol 157 ◽  
pp. 345-348
Author(s):  
J.S. Panesar ◽  
N. Moore ◽  
A.H. Nelson

We describe here the results of 3-D numerical simulations of an αω-dynamo in galaxies with differential rotation, small scale turbulence, and a shock wave induced by a stellar density wave. A non-linear quenching mechanism for the dynamo instability is used, and with the model parameters employed the field achieves a steady state which closely resembles observed fields in galaxies. The magnetic field vectors are parallel to the plane in the disc, with the magnetic intensity decreasing away from the plane. The vectors are also nearly parallel to the spiral arms in the disc, and the field direction is axisymmetric about the galactic centre, but with significant increase of intensity in the arms. The magnetic intensity rises steeply towards the centre of the galaxy, where the field becomes dominated by the vertical component. Nowhere in the parameter range covered is the bi-symmetric field mode dominant.


2013 ◽  
Vol 26 (8) ◽  
pp. 2514-2533 ◽  
Author(s):  
Richard W. Reynolds ◽  
Dudley B. Chelton ◽  
Jonah Roberts-Jones ◽  
Matthew J. Martin ◽  
Dimitris Menemenlis ◽  
...  

Abstract Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis. The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly ) show important differences. One analysis tends to reproduce small-scale features more accurately when the high-resolution data coverage is good but produces more spurious small-scale noise when the high-resolution data coverage is poor. Analysis procedures can thus generate small-scale features with and without data, but the small-scale features in an SST analysis may be just noise when high-resolution data are sparse. Users must therefore be skeptical of high-resolution SST products, especially in regions where high-resolution (~5 km) infrared satellite data are limited because of cloud cover.


Sign in / Sign up

Export Citation Format

Share Document