scholarly journals The diverse chemical mixing state of aerosol particles in the southeastern United States

2018 ◽  
Vol 18 (16) ◽  
pp. 12595-12612 ◽  
Author(s):  
Amy L. Bondy ◽  
Daniel Bonanno ◽  
Ryan C. Moffet ◽  
Bingbing Wang ◽  
Alexander Laskin ◽  
...  

Abstract. Aerosols in the atmosphere are chemically complex with thousands of chemical species distributed in different proportions across individual particles in an aerosol population. An internal mixing assumption, with species present in the same proportions across all aerosols, is used in many models and calculations of secondary organic aerosol (SOA) formation, cloud activation, and aerosol optical properties. However, many of these effects depend on the distribution of species within individual particles, and important information can be lost when internal mixtures are assumed. Herein, we show that – as found during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, Alabama, at a rural, forested location – aerosols frequently are not purely internally mixed, even in the accumulation mode (0.2–1.0 µm). A range of aerosol sources and the mixing state were determined using computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM-EDX) and scanning transmission X-ray microscopy–near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS). Particles that were dominated by SOA and inorganic salts (e.g., ammonium sulfate) were the majority of particles by number fraction from 0.2 to 5 µm with an average of 78 % SOA in the accumulation mode. However, during certain periods contributions by sea spray aerosol (SSA) and mineral dust were significant to accumulation (22 % SSA and 26 % dust) and coarse-mode number concentrations (38 % SSA and 63 % dust). The fraction of particles containing key elements (Na, Mg, K, Ca, and Fe) were determined as a function of size for specific classes of particles. Within internally mixed SOA/sulfate particles < 5 % contained Na, Mg, K, Ca, or Fe, though these nonvolatile cations were present in particles from the other sources (e.g., SSA and dust). Mass estimates of the aerosol elemental components were used to determine the extent of internal versus external mixing by calculating the mixing state index (χ). The aerosol population was more externally mixed than internally mixed during all time periods analyzed. Accumulation mode aerosol ranged from more internally mixed during SOA periods to mostly externally mixed during dust periods. Supermicron aerosols were most externally mixed during SOA time periods, when more SOA particles added a distinct supermicron class, and more internally mixed when dominated by a single particle type (e.g., SSA or dust). These results emphasize that neither external nor internal mixtures fully represent the mixing state of atmospheric aerosols, even in a rural, forested environment, which has important implications for air quality and climate modeling.

2018 ◽  
Author(s):  
Amy L. Bondy ◽  
Daniel Bonanno ◽  
Ryan C. Moffet ◽  
Bingbing Wang ◽  
Alexander Laskin ◽  
...  

Abstract. Aerosols in the atmosphere are chemically complex with thousands or more chemical species distributed in different proportions across individual particles in an aerosol population. An internal mixing assumption, with species present in the same proportions across all aerosols, is used in many models and calculations of secondary organic aerosol (SOA) formation, cloud activation, and aerosol optical properties. However, many of these effects depend on the distribution of species within individual particles, and important information can be lost when internal mixtures are assumed. Herein, we show that during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, Alabama, at a rural, forested location, that aerosols frequently are not purely internally mixed, even in the accumulation mode (0.2–1.0 µm). A range of aerosol sources and mixing states were obtained using computer controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) and scanning transmission X-ray microscopy-near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS). Particles that were dominated by SOA and inorganic salts were the majority of particles by number fraction from 0.2–5 microns with an average of 78 % SOA in the accumulation mode. However, during certain periods contributions by sea spray aerosol (SSA) and mineral dust were significant to accumulation (22 % SSA and 26 % dust) and coarse mode number concentrations (38 % SSA and 63 % dust). The fraction of particles containing key elements (Na, Mg, K, Ca, and Fe) were determined as a function of size for specific classes of particles. Within internally mixed SOA/sulfate particles


2014 ◽  
Vol 20 (2) ◽  
pp. 531-536 ◽  
Author(s):  
Gregor Schmid ◽  
Fabian Zeitvogel ◽  
Likai Hao ◽  
Pablo Ingino ◽  
Wolfgang Kuerner ◽  
...  

AbstractChemical nano-tomography of microbial cells in their natural, hydrated state provides direct evidence of metabolic and chemical processes. Cells of the nitrate-reducing Acidovorax sp. strain BoFeN1 were cultured in the presence of ferrous iron. Bacterial reduction of nitrate causes precipitation of Fe(III)-(oxyhydr)oxides in the periplasm and in direct vicinity of the cells. Nanoliter aliquots of cell-suspension were injected into custom-designed sample holders wherein polyimide membranes collapse around the cells by capillary forces. The immobilized, hydrated cells were analyzed by synchrotron-based scanning transmission X-ray microscopy in combination with angle-scan tomography. This approach provides three-dimensional (3D) maps of the chemical species in the sample by employing their intrinsic near-edge X-ray absorption properties. The cells were scanned through the focus of a monochromatic soft X-ray beam at different, chemically specific X-ray energies to acquire projection images of their corresponding X-ray absorbance. Based on these images, chemical composition maps were then calculated. Acquiring projections at different tilt angles allowed for 3D reconstruction of the chemical composition. Our approach allows for 3D chemical mapping of hydrated samples and thus provides direct evidence for the localization of metabolic and chemical processes in situ.


2021 ◽  
Vol 21 (24) ◽  
pp. 18123-18146
Author(s):  
Jay M. Tomlin ◽  
Kevin A. Jankowski ◽  
Daniel P. Veghte ◽  
Swarup China ◽  
Peiwen Wang ◽  
...  

Abstract. Long-range transport of continental emissions has a far-reaching influence over remote regions, resulting in substantial change in the size, morphology, and composition of the local aerosol population and cloud condensation nuclei (CCN) budget. Here, we investigate the physicochemical properties of atmospheric particles collected on board a research aircraft flown over the Azores during the winter 2018 Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA) campaign. Particles were collected within the marine boundary layer (MBL) and free troposphere (FT) after long-range atmospheric transport episodes facilitated by dry intrusion (DI) events. Chemical and physical properties of individual particles were investigated using complementary capabilities of computer-controlled scanning electron microscopy and X-ray spectromicroscopy to probe particle external and internal mixing state characteristics. Furthermore, real-time measurements of aerosol size distribution, cloud condensation nuclei (CCN) concentration, and back-trajectory calculations were utilized to help bring into context the findings from offline spectromicroscopy analysis. While carbonaceous particles were found to be the dominant particle type in the region, changes in the percent contribution of organics across the particle population (i.e., external mixing) shifted from 68 % to 43 % in the MBL and from 92 % to 46 % in FT samples during DI events. This change in carbonaceous contribution is counterbalanced by the increase in inorganics from 32 % to 57 % in the MBL and 8 % to 55 % in FT. The quantification of the organic volume fraction (OVF) of individual particles derived from X-ray spectromicroscopy, which relates to the multi-component internal composition of individual particles, showed a factor of 2.06 ± 0.16 and 1.11 ± 0.04 increase in the MBL and FT, respectively, among DI samples. We show that supplying particle OVF into the κ-Köhler equation can be used as a good approximation of field-measured in situ CCN concentrations. We also report changes in the κ values in the MBL from κMBL, non-DI=0.48 to κMBL, DI=0.41, while changes in the FT result in κFT, non-DI=0.36 to κFT, DI=0.33, which is consistent with enhancements in OVF followed by the DI episodes. Our observations suggest that entrainment of particles from long-range continental sources alters the mixing state population and CCN properties of aerosol in the region. The work presented here provides field observation data that can inform atmospheric models that simulate sources and particle composition in the eastern North Atlantic.


1991 ◽  
Vol 01 (04) ◽  
pp. 373-388 ◽  
Author(s):  
F. ALDAPE ◽  
J. FLORBS M. ◽  
R. V. DIAZ ◽  
J. MIRANDA ◽  
T. A. CAHILL ◽  
...  

As the second part of a wide project, we have carried out a study of airborne particulates in Mexico City, collected during two time periods (from 7:00 to 11:00, and from 11:00 to 15:00 Hrs.), one day of every week between March 1988 and February 1990. Elemental concentrations were determined by Proton Induced X-ray Emission (PIXE) for elements Na to Pb, while soot content was measured by means of Laser Integrating Plate Method (LIPM). As expected, the concentrations show an increase during the months October to March, due to frequent thermal inversions and dry weather. Moreover, the pollutant levels are higher during earlier hours, while the soil and anthropogenic origin of the elements can be better determined for the mid-day period, as seen from the grouping in the respective dendograms.


2021 ◽  
Author(s):  
Jay M. Tomlin ◽  
Kevin A. Jankowski ◽  
Daniel P. Veghte ◽  
Swarup China ◽  
Peiwen Wang ◽  
...  

Abstract. Long-range transport of continental emission has far reaching influence over remote regions resulting in substantial change in the size, morphology, and composition of the local aerosol population and cloud condensation nuclei (CCN) budget. Here, we investigate the physiochemical properties of atmospheric particles collected onboard a research aircraft flown over the Azores during the winter 2018 Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA) campaign. Particles were collected within the marine boundary layer (MBL) and free troposphere (FT), after long-range atmospheric transport episodes facilitated by dry intrusion (DI) events. Chemical and physical properties of individual particles were investigated using complementary capabilities of computer-controlled scanning electron microscopy and X-ray spectro-microscopy to probe particle external and internal mixing state characteristics in the context of real-time measurements of aerosol size distribution, cloud condensation nuclei (CCN) concentration, and back trajectory calculations. While carbonaceous particles were found to be the dominant particle-type in the region, changes in the percent contribution of organics across the particle population (i.e., external mixing) shifted from 68 % to 43 % in the MBL and from 92 % to 46 % in FT samples during DI events. This change in carbonaceous contribution is counterbalanced by the increase of inorganics from 32 % to 57 % in the MBL and 8 % to 55 % in FT. The quantification of organic volume fraction (OVF) of individual particles derived from X-ray spectro-microscopy, which relates to the multi-component internal composition of individual particles, showed a factor of 2.06 ± 0.16 and 1.11 ± 0.04 increase in the MBL and FT, respectively, among DI samples. We show that supplying particle OVF into the κ-Köhler equation can be used as a good approximation of field measured in-situ CCN concentrations. We also report changes in the κ values between κMBL, non-DI = 0.48 to κMBL, DI = 0.41 and κFT, non-DI = 0.36 to κFT, DI = 0.33, which is consistent with enhancements in OVF followed by the DI episodes. Our observations suggest that entrainment of particles from long-range continental sources alters the mixing state population and CCN properties of aerosol in the region. The work presented here provides field observation data that can inform atmospheric models that simulate sources and particle composition in the Eastern North Atlantic.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
B. Craig ◽  
L. Hawkey ◽  
A. LeFurgey

Ultra-rapid freezing followed by cryoultramicrotomy is essential for the preservation of diffusible elements in situ within cells prior to scanning transmission electron microscopy and quantitative energy dispersive x-ray microanalysis. For cells or tissue fragments in suspension and for monolayer cell cultures, propane jet freezing provides cooling rates greater than 30,000°C/sec with regions up to 40μm in thickness free of significant ice crystal formation. While this method of freezing has frequently been applied prior to freeze fracture or freeze substitution, it has not been widely utilized prior to cryoultramicrotomy and subsequent x-ray microanalytical studies. This report describes methods devised in our laboratory for cryosectioning of propane jet frozen kidney proximal tubule suspensions and cultured embryonic chick heart cells, in particular a new technique for mounting frozen suspension specimens for sectioning. The techniques utilize the same specimen supports and sample holders as those used for freeze fracture and freeze substitution and should be generally applicable to any cell suspension or culture preparation.


Sign in / Sign up

Export Citation Format

Share Document