scholarly journals The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?

2018 ◽  
Vol 18 (17) ◽  
pp. 12797-12816 ◽  
Author(s):  
Qianqian Wang ◽  
Zhanqing Li ◽  
Jianping Guo ◽  
Chuanfeng Zhao ◽  
Maureen Cribb

Abstract. The effect of aerosols on lightning has been noted in many case studies, but much less is known about the long-term impact, relative importance of dynamics–thermodynamics versus aerosol, and any difference by different types of aerosols. Attempts are made to tackle all these factors, whose distinct roles are discovered by analyzing 11-year datasets of lightning, aerosol loading and composition, and dynamic–thermodynamic data from satellite and model reanalysis. Variations in the lightning rate are analyzed with respect to changes in dynamic–thermodynamic variables and indices such as the convective available potential energy (CAPE) and vertical wind shear. In general, lightning has strong diurnal and seasonal variations, peaking in the afternoon and during the summer. The lightning flash rate is much higher in moist central Africa than in dry northern Africa presumably because of the combined influences of surface heating, CAPE, relative humidity (RH), and aerosol type. In both regions, the lightning flash rate changes with aerosol optical depth (AOD) in a boomerang shape: first increasing with AOD, tailing off around AOD  =  0.3, and then behaving differently, i.e., decreasing for dust and flattening for smoke aerosols. The deviation is arguably caused by the tangled influences of different thermodynamics (in particular humidity and CAPE) and aerosol type between the two regions. In northern Africa, the two branches of the opposite trends seem to echo the different dominant influences of the aerosol microphysical effect and the aerosol radiative effect that are more pronounced under low and high aerosol loading conditions, respectively. Under low-AOD conditions, the aerosol microphysical effect more likely invigorates deep convection. This may gradually yield to the suppression effect as AOD increases, leading to more and smaller cloud droplets that are highly susceptible to evaporation under the dry conditions of northern Africa. For smoke aerosols in moist central Africa, the aerosol invigoration effect can be sustained across the entire range of AOD by the high humidity and CAPE. This, plus a potential heating effect of the smoke layer, jointly offsets the suppression of convection due to the radiative cooling at the surface by smoke aerosols. Various analyses were done that tend to support this hypothesis.

2020 ◽  
Vol 77 (5) ◽  
pp. 1583-1612 ◽  
Author(s):  
Nana Liu ◽  
Chuntao Liu ◽  
Baohua Chen ◽  
Edward Zipser

Abstract A 16-yr Tropical Rainfall Measuring Mission (TRMM) convective feature (CF) dataset and ERA-Interim data are used to understand the favorable thermodynamic and kinematic environments for high-flash-rate thunderstorms globally as well as regionally. We find that intense thunderstorms, defined as having more than 50 lightning flashes within a CF during the ~90-s TRMM overpassing time share a few common thermodynamic features over various regions. These include large convective available potential energy (>1000 J kg−1), small to moderate convection inhibition (CIN), and abundant moisture convergence associated with low-level warm advection. However, each region has its own specific features. Generally, thunderstorms with high lightning flash rates have greater CAPE and wind shear than those with low flash rates, but the differences are much smaller in tropical regions than in subtropical regions. The magnitude of the low- to midtropospheric wind shear is greater over the subtropical regions, including the south-central United States, Argentina, and southwest of the Himalayas, than tropical regions, including central Africa, Colombia, and northwest Mexico, with the exception of Sahel region. Relatively, favorable environments of high-flash-rate thunderstorms in the tropical regions are characterized by higher CAPE, lower CIN, and weaker wind shear compared to the high-flash-rate thunderstorms in the subtropical regions, which have a moderate CAPE and CIN, and stronger low to midtropospheric wind shear.


2018 ◽  
Vol 57 (8) ◽  
pp. 1663-1681 ◽  
Author(s):  
Tong Ren ◽  
Anita D. Rapp ◽  
Shaima L. Nasiri ◽  
John R. Mecikalski ◽  
Jason Apke

AbstractThe Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals from the Terra and Aqua satellites currently provide the largest satellite aerosol dataset for investigating relationships to meteorological phenomena, such as aerosol impact on electrification in deep convection. The usefulness of polar-orbiting satellite aerosol retrievals in lightning inference is examined by correlating MODIS AOD retrievals with lightning observations of the thunderstorms in the summers during 2002–14 over northern Alabama. Lightning flashes during the 1400–1700 local standard time peak period show weak but positive correlations with the MODIS AOD retrievals 2–4 h earlier. The correlation becomes stronger in particular meteorological conditions, including weak vertical wind shear and prevailing northerly winds over northern Alabama. Results show that the MODIS AOD retrievals are less useful in predicting enhanced lightning flash rate for lightning-producing storms than the forecasts of other meteorological variables that are more closely linked to the intensification of convective storms. However, when relatively weaker convective available potential energy (CAPE) is forecast, the probability of enhanced lightning flash rate increases in a more polluted environment, making the knowledge of aerosols more useful in lightning inference in such CAPE regimes. The aerosol enhancement of lightning, if present, may be associated with enhanced convergence in the boundary layer and secondary convection.


2021 ◽  
Author(s):  
Earle Williams ◽  
Diego Enore ◽  
Enrique Mattos ◽  
Yen-Jung Joanne Wu

<p>Lightning activity over oceans is normally greatly suppressed in comparison with continents.  The most conspicuous region of enhanced lightning activity over open ocean is found in the equatorial Pacific (150 W) in many global lightning climatologies (OTD, LIS, WWLLN, GLD360, RHESSI, Schumann resonance Q-bursts) and is associated with the South Pacific Convergence Zone (SPCZ).  This oceanic lightning anomaly completes the zonal wavenumber-4 structure of continent-based lightning maxima (with nominal 90-degree longitudinal separation between sources), and so is appropriately named “the fourth chimney”.  This region is now under continuous surveillance by the Geostationary Lightning Mapper (GLM) on the GOES-17 satellite (at 137 W).  This total lightning activity is compared with Convective Available Potential Energy (CAPE) from ERA-5 reanalysis.  These CAPE values are correlated with values extracted from thermodynamic soundings at proximal stations Atuona, Rikitea and Tahiti.  The shape of the regional climatology of CAPE resembles that of the SPCZ and is oblique to the equator.  The total lightning flash rate is positively correlated with CAPE, and lightning locations are found preferentially in regions of elevated CAPE on individual days.  The diurnal variation of total lightning for January exceeds a factor-of-two and shows a phase at odds with the usual behavior of oceanic lightning near continents.</p>


2015 ◽  
Vol 28 (16) ◽  
pp. 6536-6547 ◽  
Author(s):  
Daniel J. Cecil ◽  
Dennis E. Buechler ◽  
Richard J. Blakeslee

Abstract The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite has previously been used to build climatologies of mean lightning flash rate across the global tropics and subtropics. This new work explores climatologies of thunderstorm occurrence as seen by LIS and the conditional mean flash rates when thunderstorms do occur. The region where thunderstorms are seen most often by LIS extends slightly farther east in central Africa than the corresponding region with the highest total mean annual flash rates. Presumably this reflects a difference between more frequent thunderstorm initiation in the east and upscale growth as storms move westward. There are some differences between locations with the greatest total lightning flash counts and those where thunderstorms occur most often. The greatest conditional mean flash rates—considering only those TRMM orbits that do have lightning in a given grid box—are found in subtropical regions. The highest values are in Argentina, with the central United States, Pakistan, eastern China, and the east coast of Australia also having particularly high values.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2021 ◽  
Vol 10 (8) ◽  
pp. 523
Author(s):  
Nicholus Mboga ◽  
Stefano D’Aronco ◽  
Tais Grippa ◽  
Charlotte Pelletier ◽  
Stefanos Georganos ◽  
...  

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 689
Author(s):  
Rudolf Brázdil ◽  
Kateřina Chromá ◽  
Tomáš Púčik ◽  
Zbyněk Černoch ◽  
Petr Dobrovolný ◽  
...  

In the Czech Republic, tornadoes may reach an intensity of F2 and F3 on the Fujita scale, causing “considerable” to “severe” damage. Documentary evidence is sufficient to allow the creation of a chronology of such events, from the earliest recorded occurrence in 1119 CE (Common Era) to 2019, including a total of 108 proven or probable significant tornadoes on 90 separate days. Since only 11 significant tornadoes were documented before 1800, this basic analysis centers around the 1811–2019 period, during which 97 tornadoes were recorded. Their frequency of occurrence was at its highest in the 1921–1930, 1931–1940, and 2001–2010 decades. In terms of annual variations, they took place most frequently in July, June, and August (in order of frequency), while daily variation favored the afternoon and early evening hours. Conservative estimates of human casualties mention 8 fatalities and over 95 people injured. The most frequent types of damage were related to buildings, individual trees, and forests. Tornadoes of F2–F3 intensity were particularly associated with synoptic types characterized by airflow from the western quadrant together with troughs of low pressure extending or advancing over central Europe. Based on parameters calculated from the ERA-5 re-analysis for the period of 1979–2018, most of these tornadoes occurred over a wide range of Convective Available Potential Energy (CAPE) values and moderate-to-strong vertical wind shear. The discussion herein also addresses uncertainties in tornado selection from documentary data, the broader context of Czech significant tornadoes, and the environmental conditions surrounding their origins.


2014 ◽  
Vol 27 (10) ◽  
pp. 3848-3868 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorm environments in Australia was explored using two global climate models: Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6), and the Cubic-Conformal Atmospheric Model (CCAM). These models have previously been evaluated and found to be capable of reproducing a useful climatology for the twentieth-century period (1980–2000). Analyzing the changes between the historical period and high warming climate scenarios for the period 2079–99 has allowed estimation of the potential convective future for the continent. Based on these simulations, significant increases to the frequency of severe thunderstorm environments will likely occur for northern and eastern Australia in a warmed climate. This change is a response to increasing convective available potential energy from higher continental moisture, particularly in proximity to warm sea surface temperatures. Despite decreases to the frequency of environments with high vertical wind shear, it appears unlikely that this will offset increases to thermodynamic energy. The change is most pronounced during the peak of the convective season, increasing its length and the frequency of severe thunderstorm environments therein, particularly over the eastern parts of the continent. The implications of this potential increase are significant, with the overall frequency of potential severe thunderstorm days per year likely to rise over the major population centers of the east coast by 14% for Brisbane, 22% for Melbourne, and 30% for Sydney. The limitations of this approach are then discussed in the context of ways to increase the confidence of predictions of future severe convection.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.


Sign in / Sign up

Export Citation Format

Share Document