scholarly journals Long-term trends in the ambient PM<sub>2.5</sub>- and O<sub>3</sub>-related mortality burdens in the United States under emission reductions from 1990 to 2010

2018 ◽  
Vol 18 (20) ◽  
pp. 15003-15016 ◽  
Author(s):  
Yuqiang Zhang ◽  
J. Jason West ◽  
Rohit Mathur ◽  
Jia Xing ◽  
Christian Hogrefe ◽  
...  

Abstract. Concentrations of both fine particulate matter (PM2.5) and ozone (O3) in the United States (US) have decreased significantly since 1990, mainly because of air quality regulations. Exposure to these air pollutants is associated with premature death. Here we quantify the annual mortality burdens from PM2.5 and O3 in the US from 1990 to 2010, estimate trends and inter-annual variability, and evaluate the contributions to those trends from changes in pollutant concentrations, population, and baseline mortality rates. We use a fine-resolution (36 km) self-consistent 21-year simulation of air pollutant concentrations in the US from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates. From 1990 to 2010, the modeled population-weighted annual PM2.5 decreased by 39 %, and summertime (April to September) 1 h average daily maximum O3 decreased by 9 % from 1990 to 2010. The PM2.5-related mortality burden from ischemic heart disease, chronic obstructive pulmonary disease, lung cancer, and stroke steadily decreased by 54 % from 123 700 deaths year−1 (95 % confidence interval, 70 800–178 100) in 1990 to 58 600 deaths year−1 (24 900–98 500) in 2010. The PM2.5-related mortality burden would have decreased by only 24 % from 1990 to 2010 if the PM2.5 concentrations had stayed at the 1990 level, due to decreases in baseline mortality rates for major diseases affected by PM2.5. The mortality burden associated with O3 from chronic respiratory disease increased by 13 % from 10 900 deaths year−1 (3700–17 500) in 1990 to 12 300 deaths year−1 (4100–19 800) in 2010, mainly caused by increases in the baseline mortality rates and population, despite decreases in O3 concentration. The O3-related mortality burden would have increased by 55 % from 1990 to 2010 if the O3 concentrations had stayed at the 1990 level. The detrended annual O3 mortality burden has larger inter-annual variability (coefficient of variation of 12 %) than the PM2.5-related burden (4 %), mainly from the inter-annual variation of O3 concentration. We conclude that air quality improvements have significantly decreased the mortality burden, avoiding roughly 35 800 (38 %) PM2.5-related deaths and 4600 (27 %) O3-related deaths in 2010, compared to the case if air quality had stayed at 1990 levels (at 2010 baseline mortality rates and population).

2018 ◽  
Author(s):  
Yuqiang Zhang ◽  
J. Jason West ◽  
Rohit Mathur ◽  
Jia Xing ◽  
Christian Hogrefe ◽  
...  

Abstract. Concentrations of both fine particulate matter (PM2.5) and ozone (O3) in the United States (US) have decreased significantly since 1990, mainly because of air quality regulations. These air pollutants are associated with premature death. Here we quantify the annual mortality burdens from PM2.5 and O3 in the US from 1990 to 2010, estimate trends and inter-annual variability, and evaluate the contributions to those trends from changes in pollutant concentrations, population, and baseline mortality rates. We use a fine-resolution (36 km) self-consistent 21-year simulation of air pollutant concentrations in the US from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates. From 1990 to 2010, the modeled population-weighted annual PM2.5 decreased by 39 %, and summertime (April to September) 1hr average daily maximum O3 decreased by 9 % from 1990 to 2010. The PM2.5-related mortality burden from ischemic heart disease, chronic obstructive pulmonary disease, lung cancer, and stroke, steadily decreased by 53 % from 123,700 deaths yr−1 (95 % confidence interval, 70,800–178,100) in 1990 to 58,600 deaths −1 (24,900–98,500) in 2010. The PM2.5 -related mortality burden would have decreased by only 24 % from 1990 to 2010 if the PM2.5 concentrations had stayed at the 1990 level, due to decreases in baseline mortality rates for major diseases affected by PM2.5. The mortality burden associated with O3 from chronic respiratory disease increased by 13 % from 10,900 deaths −1 (3,700–17,500) in 1990 to 12,300 deaths −1 (4,100–19,800) in 2010, mainly caused by increases in the baseline mortality rates and population, despite decreases in O3 concentration. The O3-related mortality burden would have increased by 55 % from 1990 to 2010 if the O3 concentrations had stayed at the 1990 level. The detrended annual O3 mortality burden has larger inter-annual variability (coefficient of variation of 12 %) than the PM2.5-related burden (4 %), mainly from the inter-annual variation of O3 concentration. We conclude that air quality improvements have significantly decreased the mortality burden, avoiding roughly 35,800 (38 %) PM2.5-related deaths and 4,600 (27 %) O3-related deaths in 2010, compared to the case if air quality had stayed at 1990 levels.


2019 ◽  
Vol 34 (s1) ◽  
pp. s22-s22
Author(s):  
Aishwarya Sharma ◽  
Sharon Mace

Introduction:Between 2000 to 2017, there were over 150 hospital evacuations in the United States. Data received from approximately 35 states were primarily concentrated in California, Florida, and Texas. This analysis will provide disaster planners and administrators statistics on hazards that cause disruptions to hospital facilities.Aim:The aim of this study is to investigate US hospital evacuations by compiling the data into external, internal, and man-made disasters thus creating a risk assessment for disaster planning.Methods:Hospital reports were retrieved from LexisNexis, Google, and PubMed databases and categorized according to evacuees, duration, location, and type. These incidents were grouped into three classifications: external, internal, and man-made. Both partial and full evacuations were included in the study design.Results:There were a total of 154 reported evacuations in the United States. 110 (71%) were due to external threats, followed by 24 (16%) man-made threats, and 20 (13%) internal threats. Assessing the external causes, 60 (55%) were attributed to hurricanes, 21 (19%) to wildfires, and 8 (7%) to storms. From the internal threats, 8 (40%) were attributed to hospital fires and 4 (20%) chemical fumes. From the man-made threats, 6 (40%) were attributed to bomb threats and 4 (27%) gunmen. From the 20 total reported durations of evacuations, 9 (45%) lasted between 2 to 11:59 hours, 6 (30%) lasted over 24 hours, and 5 (25%) lasted up to 1:59 hours.Discussion:Over 70% of hospital evacuations in the US were due to natural disasters. Compared to 1971-1999, there was an increase in internal and man-made threats. Exact statistics on evacuees, durations, injuries, and mortality rates were unascertainable due to a lack of reporting. It is critical to implement a national registry to report specifics on incidences of evacuations to further assist with disaster and infrastructure planning.


2010 ◽  
Vol 10 (15) ◽  
pp. 7415-7423 ◽  
Author(s):  
B. Gantt ◽  
N. Meskhidze ◽  
A. G. Carlton

Abstract. The contribution of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA) regional-scale Community Multiscale Air Quality (CMAQv4.7) modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM) from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air pollution. Model simulations show that marine organics can increase the concentration of PM2.5 by 0.1–0.3 μg m−3 (up to 5%) in some coastal cities such as San Francisco, CA. This increase in the PM2.5 concentration is primarily attributed to the POM emissions, with small contributions from the marine isoprene and monoterpenes. When marine organic emissions are included, organic carbon (OC) concentrations over the remote ocean are increased by up to 50% (25% in coastal areas), values consistent with recent observational findings. This study is the first to quantify the air quality impacts from marine POM and monoterpenes for the United States, and it highlights the need for inclusion of marine organic emissions in air quality models.


2021 ◽  
Vol 14 (6) ◽  
pp. 4617-4637
Author(s):  
Karoline K. Barkjohn ◽  
Brett Gantt ◽  
Andrea L. Clements

Abstract. PurpleAir sensors, which measure particulate matter (PM), are widely used by individuals, community groups, and other organizations including state and local air monitoring agencies. PurpleAir sensors comprise a massive global network of more than 10 000 sensors. Previous performance evaluations have typically studied a limited number of PurpleAir sensors in small geographic areas or laboratory environments. While useful for determining sensor behavior and data normalization for these geographic areas, little work has been done to understand the broad applicability of these results outside these regions and conditions. Here, PurpleAir sensors operated by air quality monitoring agencies are evaluated in comparison to collocated ambient air quality regulatory instruments. In total, almost 12 000 24 h averaged PM2.5 measurements from collocated PurpleAir sensors and Federal Reference Method (FRM) or Federal Equivalent Method (FEM) PM2.5 measurements were collected across diverse regions of the United States (US), including 16 states. Consistent with previous evaluations, under typical ambient and smoke-impacted conditions, the raw data from PurpleAir sensors overestimate PM2.5 concentrations by about 40 % in most parts of the US. A simple linear regression reduces much of this bias across most US regions, but adding a relative humidity term further reduces the bias and improves consistency in the biases between different regions. More complex multiplicative models did not substantially improve results when tested on an independent dataset. The final PurpleAir correction reduces the root mean square error (RMSE) of the raw data from 8 to 3 µg m−3, with an average FRM or FEM concentration of 9 µg m−3. This correction equation, along with proposed data cleaning criteria, has been applied to PurpleAir PM2.5 measurements across the US on the AirNow Fire and Smoke Map (https://fire.airnow.gov/, last access: 14 May 2021) and has the potential to be successfully used in other air quality and public health applications.


2021 ◽  
Vol 118 (20) ◽  
pp. e2013637118
Author(s):  
Nina G. G. Domingo ◽  
Srinidhi Balasubramanian ◽  
Sumil K. Thakrar ◽  
Michael A. Clark ◽  
Peter J. Adams ◽  
...  

Agriculture is a major contributor to air pollution, the largest environmental risk factor for mortality in the United States and worldwide. It is largely unknown, however, how individual foods or entire diets affect human health via poor air quality. We show how food production negatively impacts human health by increasing atmospheric fine particulate matter (PM2.5), and we identify ways to reduce these negative impacts of agriculture. We quantify the air quality–related health damages attributable to 95 agricultural commodities and 67 final food products, which encompass >99% of agricultural production in the United States. Agricultural production in the United States results in 17,900 annual air quality–related deaths, 15,900 of which are from food production. Of those, 80% are attributable to animal-based foods, both directly from animal production and indirectly from growing animal feed. On-farm interventions can reduce PM2.5-related mortality by 50%, including improved livestock waste management and fertilizer application practices that reduce emissions of ammonia, a secondary PM2.5 precursor, and improved crop and animal production practices that reduce primary PM2.5 emissions from tillage, field burning, livestock dust, and machinery. Dietary shifts toward more plant-based foods that maintain protein intake and other nutritional needs could reduce agricultural air quality–related mortality by 68 to 83%. In sum, improved livestock and fertilization practices, and dietary shifts could greatly decrease the health impacts of agriculture caused by its contribution to reduced air quality.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246813
Author(s):  
Jacob B. Pierce ◽  
Nilay S. Shah ◽  
Lucia C. Petito ◽  
Lindsay Pool ◽  
Donald M. Lloyd-Jones ◽  
...  

Background Adults in rural counties in the United States (US) experience higher rates broadly of cardiovascular disease (CVD) compared with adults in urban counties. Mortality rates specifically due to heart failure (HF) have increased since 2011, but estimates of heterogeneity at the county-level in HF-related mortality have not been produced. The objectives of this study were 1) to quantify nationwide trends by rural-urban designation and 2) examine county-level factors associated with rural-urban differences in HF-related mortality rates. Methods and findings We queried CDC WONDER to identify HF deaths between 2011–2018 defined as CVD (I00-78) as the underlying cause of death and HF (I50) as a contributing cause of death. First, we calculated national age-adjusted mortality rates (AAMR) and examined trends stratified by rural-urban status (defined using 2013 NCHS Urban-Rural Classification Scheme), age (35–64 and 65–84 years), and race-sex subgroups per year. Second, we combined all deaths from 2011–2018 and estimated incidence rate ratios (IRR) in HF-related mortality for rural versus urban counties using multivariable negative binomial regression models with adjustment for demographic and socioeconomic characteristics, risk factor prevalence, and physician density. Between 2011–2018, 162,314 and 580,305 HF-related deaths occurred in rural and urban counties, respectively. AAMRs were consistently higher for residents in rural compared with urban counties (73.2 [95% CI: 72.2–74.2] vs. 57.2 [56.8–57.6] in 2018, respectively). The highest AAMR was observed in rural Black men (131.1 [123.3–138.9] in 2018) with greatest increases in HF-related mortality in those 35–64 years (+6.1%/year). The rural-urban IRR persisted among both younger (1.10 [1.04–1.16]) and older adults (1.04 [1.02–1.07]) after adjustment for county-level factors. Main limitations included lack of individual-level data and county dropout due to low event rates (<20). Conclusions Differences in county-level factors may account for a significant amount of the observed variation in HF-related mortality between rural and urban counties. Efforts to reduce the rural-urban disparity in HF-related mortality rates will likely require diverse public health and clinical interventions targeting the underlying causes of this disparity.


2015 ◽  
Vol 15 (22) ◽  
pp. 33209-33251
Author(s):  
J. Feng ◽  
H. Liao ◽  
J. Li

Abstract. The Pacific-North America teleconnection (PNA) is the leading general circulation pattern in the troposphere over the region of North Pacific to North America during wintertime. This study examined the impacts of monthly variation of the PNA phase (positive or negative phase) on wintertime surface-layer aerosol concentrations in the US by analyzing observations during 1999–2013 from the Air Quality System of Environmental Protection Agency (EPA-AQS) and the model results for 1986–2006 from the global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). The composite analyses on the EPA-AQS observations over 1999–2003 showed that the average concentrations of PM2.5, sulfate, nitrate, ammonium, organic carbon, and black carbon aerosols over the US were higher in the PNA positive phases than in the PNA negative phases by 1.4 μg m−3 (12.7 %), 0.1 μg m−3 (6.4 %), 0.3 μg m−3 (39.1 %), 0.2 μg m−3 (22.8 %), 0.8 μg m−3 (21.3 %), and 0.2 μg m−3 (34.1 %), respectively. The simulated geographical patterns of the differences in concentrations of all aerosol species between the PNA positive and negative phases were similar to observations. Based on the GEOS-Chem simulation driven by the assimilated meteorological fields, the PNA-induced variation in planetary boundary layer height was found to be the most dominant meteorological factor that influenced the concentrations of PM2.5, sulfate, ammonium, organic carbon, and black carbon, and the PNA-induced variation in temperature was the most important parameter that influenced nitrate aerosol. Results from this work have important implications for understanding and prediction of air quality in the United States.


2014 ◽  
Vol 14 (19) ◽  
pp. 26495-26543 ◽  
Author(s):  
M. Val Martin ◽  
C. L. Heald ◽  
J.-F. Lamarque ◽  
S. Tilmes ◽  
L. K. Emmons ◽  
...  

Abstract. We use a global coupled chemistry-climate-land model (CESM) to assess the integrated effect of climate, emissions and land use changes on annual surface O3 and PM2.5 on the United States with a focus on National Parks (NPs) and wilderness areas, using the RCP4.5 and RCP8.5 projections. We show that, when stringent domestic emission controls are applied, air quality is predicted to improve across the US, except surface O3 over the western and central US under RCP8.5 conditions, where rising background ozone counteracts domestic emissions reductions. Under the RCP4.5, surface O3 is substantially reduced (about 5 ppb), with daily maximum 8 h averages below the primary US EPA NAAQS of 75 ppb (and even 65 ppb) in all the NPs. PM2.5 is significantly reduced in both scenarios (4 μg m−3; ~50%), with levels below the annual US EPA NAAQS of 12 μg m−3 across all the NPs; visibility is also improved (10–15 deciviews; >75 km in visibility range), although some parks over the western US (40–74% of total sites in the US) may not reach the 2050 target to restore visibility to natural conditions by 2064. We estimate that climate-driven increases in fire activity may dominate summertime PM2.5 over the western US, potentially offsetting the large PM2.5 reductions from domestic emission controls, and keeping visibility at present-day levels in many parks. Our study suggests that air quality in 2050 will be primarily controlled by anthropogenic emission patterns. However, climate and land use changes alone may lead to a substantial increase in surface O3 (2–3 ppb) with important consequences for O3 air quality and ecosystem degradation at the US NPs. Our study illustrates the need to consider the effects of changes in climate, vegetation, and fires in future air quality management and planning and emission policy making.


2015 ◽  
Vol 15 (5) ◽  
pp. 2805-2823 ◽  
Author(s):  
M. Val Martin ◽  
C. L. Heald ◽  
J.-F. Lamarque ◽  
S. Tilmes ◽  
L. K. Emmons ◽  
...  

Abstract. We use a global coupled chemistry–climate–land model (CESM) to assess the integrated effect of climate, emissions and land use changes on annual surface O3 and PM2.5 in the United States with a focus on national parks (NPs) and wilderness areas, using the RCP4.5 and RCP8.5 projections. We show that, when stringent domestic emission controls are applied, air quality is predicted to improve across the US, except surface O3 over the western and central US under RCP8.5 conditions, where rising background ozone counteracts domestic emission reductions. Under the RCP4.5 scenario, surface O3 is substantially reduced (about 5 ppb), with daily maximum 8 h averages below the primary US Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) of 75 ppb (and even 65 ppb) in all the NPs. PM2.5 is significantly reduced in both scenarios (4 μg m−3; ~50%), with levels below the annual US EPA NAAQS of 12 μg m−3 across all the NPs; visibility is also improved (10–15 dv; >75 km in visibility range), although some western US parks with Class I status (40–74 % of total sites in the US) are still above the 2050 planned target level to reach the goal of natural visibility conditions by 2064. We estimate that climate-driven increases in fire activity may dominate summertime PM2.5 over the western US, potentially offsetting the large PM2.5 reductions from domestic emission controls, and keeping visibility at present-day levels in many parks. Our study indicates that anthropogenic emission patterns will be important for air quality in 2050. However, climate and land use changes alone may lead to a substantial increase in surface O3 (2–3 ppb) with important consequences for O3 air quality and ecosystem degradation at the US NPs. Our study illustrates the need to consider the effects of changes in climate, vegetation, and fires in future air quality management and planning and emission policy making.


2020 ◽  
Vol 14 (2) ◽  
pp. 384-419
Author(s):  
Cristian Redondo Lourés ◽  
Andrew J. G. Cairns

AbstractDifferent mortality rates for different socio-economic groups within a population have been consistently reported throughout the years. In this study, we aim to exploit data from multiple public sources, including highly detailed cause-of-death data from the United States Centers for Disease Control and Prevention, to explore the mortality gap between the better and worse off in the US during the period 1989–2015, using education as a proxy.


Sign in / Sign up

Export Citation Format

Share Document