scholarly journals Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations

2018 ◽  
Vol 18 (22) ◽  
pp. 16631-16652 ◽  
Author(s):  
Larisa Sogacheva ◽  
Edith Rodriguez ◽  
Pekka Kolmonen ◽  
Timo H. Virtanen ◽  
Giulia Saponaro ◽  
...  

Abstract. Understanding long-term variations in aerosol loading is essential for evaluating the health and climate effects of airborne particulates as well as the effectiveness of pollution control policies. The expected satellite lifetime is about 10 to 15 years. Therefore, to study the variations of atmospheric constituents over longer periods information from different satellites must be utilized. Here we introduce a method to construct a combined annual and seasonal long time series of AOD at 550 nm using the Along-Track Scanning Radiometers (ATSR: ATSR-2 and AATSR combined) and the MODerate resolution Imaging Spectroradiometer on Terra (MODIS/Terra), which together cover the 1995–2017 period. The long-term (1995–2017) combined AOD time series are presented for all of mainland China, for southeastern (SE) China and for 10 selected regions in China. Linear regression was applied to the combined AOD time series constructed for individual L3 (1∘ × 1∘) pixels to estimate the AOD tendencies for two periods: 1995–2006 (P1) and 2011–2017 (P2), with respect to the changes in the emission reduction policies in China. During P1, the annually averaged AOD increased by 0.006 (or 2 % of the AOD averaged over the corresponding period) per year across all of mainland China, reflecting increasing emissions due to rapid economic development. In SE China, the annual AOD positive tendency in 1995–2006 was 0.014 (3 %) per year, reaching maxima (0.020, or 4 %, per year) in Shanghai and the Pearl River Delta regions. After 2011, during P2, AOD tendencies reversed across most of China with the annually averaged AOD decreasing by −0.015 (−6 %) per year in response to the effective reduction of the anthropogenic emissions of primary aerosols, SO2 and NOx. The strongest AOD decreases were observed in the Chengdu (−0.045, or −8 %, per year) and Zhengzhou (−0.046, or −9 %, per year) areas, while over the North China Plain and coastal areas the AOD decrease was lower than −0.03 (approximately −6 %) per year. In the less populated areas the AOD decrease was small. The AOD tendency varied by both season and region. The increase in the annually averaged AOD during P1 was mainly due to an increase in summer and autumn in SE China (0.020, or 4 %, and 0.016, or 4 %, per year, respectively), while during winter and spring the AOD actually decreased over most of China. The AOD negative tendencies during the 2011–2017 period were larger in summer than in other seasons over the whole of China (ca. −0.021, or −7 %, per year) and over SE China (ca. −0.048, or −9 %, per year). The long-term AOD variations presented here show a gradual decrease in the AOD after 2011 with an average reduction of 30 %–50 % between 2011 and 2017. The effect is more visible in the highly populated and industrialized regions in SE China, as expected.

2018 ◽  
Author(s):  
Larisa Sogacheva ◽  
Edith Rodriguez ◽  
Pekka Kolmonen ◽  
Timo H. Virtanen ◽  
Giulia Saponaro ◽  
...  

Abstract. Understanding long-term trends in aerosol loading is essential for evaluating the health and climate effects of airborne particulates as well as the effectiveness of pollution control policies. Here we introduce a method to construct a combined annual and seasonal AOD long time series using the Along-Track Scanning Radiometers (ATSR: ATSR-2 and AATSR) and MODerate resolution Imaging Spectroradiometer Terra (MODIS/Terra), which together cover the period of 1995–2017. The long-term (1995–2017) annual and seasonal combined AOD time series are presented for the all of mainland China, for southeastern (SE) China and for 10 selected regions in China and analyzed to reveal the AOD tendencies during the last 23 years. Linear regression has been applied to individual L3 (1°×1°) pixels of the annual and seasonal combined AOD time series to estimate the AOD tendencies for three periods: 1995–2006 (P1) and 2011–2017 (P2), as regarding the changes in the emission reduction policies, and the whole period 1995–2017 (WP), when combined AOD time series is available. Positive tendencies of annual AOD (0.006, or 2 % of AOD, per year) prevailed across all of mainland China before 2006 due to emission increases induced by rapid economic development. In southeastern China, the annual AOD positive tendency in 1995–2006 was 0.014, or 3 % of AOD, per year in SE China, reaching maxima (0.020, or 4 % of AOD, per year) in Shanghai and the Pearl River Delta regions. Negative AOD tendencies (−0.015, or −6 % of AOD, per year) were identified across most of China after 2011 in conjunction with effective emission reduction in anthropogenic primary aerosols, SO2 and NOx (Jin et al., 2016, van der A et al., 2017). The strongest AOD decrease is observed in Chengdu (−0.045, or −8 % of AOD, per year) and Zhengzhou (−0.046, or −9 % of AOD, per year) areas, while over the North China plane and coastal areas the AOD decrease was lower than −0.03, or ca. −6 % of AOD, per year. In the less populated areas, the AOD decrease was small. The AOD tendencies for the whole period 1995–2017 were much less pronounced compared to P1 and P2. The reason for that is that positive AOD tendency has been observed at the beginning of WP (in P1) and negative AOD tendency has been observed at the end of WP (in P2), which partly cancel each other during 1995–2017. In the WP, AOD was slightly increasing over the Beijing-Tianjin-Hebei area (0.008, or 1.3 % of AOD, per year) and the Pearl River Delta (0.004, or 0.6 % of AOD, per year). A slightly negative AOD tendency (−0.004, or −0.7 % per year) was observed in the Chengdu and Zhengzhou areas. Seasonal patterns in the AOD regional long-term trend are evident. The contribution of seasonal AOD tendencies in annual tendencies was not equal along the year. While the annual AOD tendency was positive in 1995–2006, the AOD tendencies in winter and spring were slightly negative (ca. −0.002, or −1 % of AOD, per year) over the most of China during that period. AOD tendencies were positive in summer (0.008, or 2 % of AOD, per year) and autumn (0.006, or 6 % of AOD, per year) over all mainland China and SE China (0.020, or 4 % of AOD, per year and 0.016, or 4 % of AOD, per year in summer and autumn, respectively). The AOD negative tendencies in 2011–2017 were higher compared to other seasons in summer over China (ca. −0.021, or −7 % of AOD, per year) and over SE China (ca. −0.048, or −9 % of AOD, per year). The results obtained in the current study show that the effect of the changes in the emission regulations policy in China during 1995–2017 is evident in AOD gradual decrease after 2011. The effect is more visible in the highly populated and industrialized regions in SE China.


2012 ◽  
Vol 25 (23) ◽  
pp. 8238-8258 ◽  
Author(s):  
Johannes Mülmenstädt ◽  
Dan Lubin ◽  
Lynn M. Russell ◽  
Andrew M. Vogelmann

Abstract Long time series of Arctic atmospheric measurements are assembled into meteorological categories that can serve as test cases for climate model evaluation. The meteorological categories are established by applying an objective k-means clustering algorithm to 11 years of standard surface-meteorological observations collected from 1 January 2000 to 31 December 2010 at the North Slope of Alaska (NSA) site of the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM). Four meteorological categories emerge. These meteorological categories constitute the first classification by meteorological regime of a long time series of Arctic meteorological conditions. The synoptic-scale patterns associated with each category, which include well-known synoptic features such as the Aleutian low and Beaufort Sea high, are used to explain the conditions at the NSA site. Cloud properties, which are not used as inputs to the k-means clustering, are found to differ significantly between the regimes and are also well explained by the synoptic-scale influences in each regime. Since the data available at the ARM NSA site include a wealth of cloud observations, this classification is well suited for model–observation comparison studies. Each category comprises an ensemble of test cases covering a representative range in variables describing atmospheric structure, moisture content, and cloud properties. This classification is offered as a complement to standard case-study evaluation of climate model parameterizations, in which models are compared against limited realizations of the Earth–atmosphere system (e.g., from detailed aircraft measurements).


2007 ◽  
pp. 88
Author(s):  
Wataru Suzuki ◽  
Yanfei Zhou

This article represents the first step in filling a large gap in knowledge concerning why Public Assistance (PA) use recently rose so fast in Japan. Specifically, we try to address this problem not only by performing a Blanchard and Quah decomposition on long-term monthly time series data (1960:04-2006:10), but also by estimating prefecturelevel longitudinal data. Two interesting findings emerge from the time series analysis. The first is that permanent shock imposes a continuously positive impact on the PA rate and is the main driving factor behind the recent increase in welfare use. The second finding is that the impact of temporary shock will last for a long time. The rate of the use of welfare is quite rigid because even if the PA rate rises due to temporary shocks, it takes about 8 or 9 years for it to regain its normal level. On the other hand, estimations of prefecture-level longitudinal data indicate that the Financial Capability Index (FCI) of the local government2 and minimum wage both impose negative effects on the PA rate. We also find that the rapid aging of Japan's population presents a permanent shock in practice, which makes it the most prominent contribution to surging welfare use.


2020 ◽  
Vol 12 (7) ◽  
pp. 1102
Author(s):  
Bin Zou ◽  
Ning Liu ◽  
Wei Wang ◽  
Huihui Feng ◽  
Xiangping Liu ◽  
...  

Current reported spatiotemporal solutions for fusing multisensor aerosol optical depth (AOD) products used to recover gaps either suffer from unacceptable accuracy levels, i.e., fixed rank smooth (FRS), or high time costs, i.e., Bayesian maximum entropy (BME). This problem is generally more serious when dealing with multiple AOD products in a long time series or over large geographic areas. This study proposes a new, effective, and efficient enhanced FRS method (FRS-EE) to fuse satellite AOD products with uncertainty constraints. AOD products used in the fusion experiment include Moderate Resolution Imaging SpectroRadiometer (MODIS) DB/DT_DB_Combined AOD and Multiangle Imaging SpectroRadiometer (MISR) AOD across mainland China from 2016 to 2017. Results show that the average completeness of original, initial FRS fused, and FRS-EE fused AODs with uncertainty constraints are 22.80%, 95.18%, and 65.84%, respectively. Although the correlation coefficient (R = 0.77), root mean square error (RMSE = 0.30), and mean bias (Bias = 0.023) of the initial FRS fused AODs are relatively lower than those of original AODs compared to Aerosol Robotic Network (AERONET) AOD records, the accuracy of FRS-EE fused AODs, which are R = 0.88, RMSE = 0.20, and Bias = 0.022, is obviously improved. More importantly, in regions with fully missing original AODs, the accuracy of FRS-EE fused AODs is close to that of original AODs in regions with valid retrievals. Meanwhile, the time cost of FRS-EE for AOD fusion was only 2.91 h; obviously lower than the 30.46 months taken for BME.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2009 ◽  
Vol 66 (7) ◽  
pp. 1467-1479 ◽  
Author(s):  
Sarah L. Hughes ◽  
N. Penny Holliday ◽  
Eugene Colbourne ◽  
Vladimir Ozhigin ◽  
Hedinn Valdimarsson ◽  
...  

Abstract Hughes, S. L., Holliday, N. P., Colbourne, E., Ozhigin, V., Valdimarsson, H., Østerhus, S., and Wiltshire, K. 2009. Comparison of in situ time-series of temperature with gridded sea surface temperature datasets in the North Atlantic. – ICES Journal of Marine Science, 66: 1467–1479. Analysis of the effects of climate variability and climate change on the marine ecosystem is difficult in regions where long-term observations of ocean temperature are sparse or unavailable. Gridded sea surface temperature (SST) products, based on a combination of satellite and in situ observations, can be used to examine variability and long-term trends because they provide better spatial coverage than the limited sets of long in situ time-series. SST data from three gridded products (Reynolds/NCEP OISST.v2., Reynolds ERSST.v3, and the Hadley Centre HadISST1) are compared with long time-series of in situ measurements from ICES standard sections in the North Atlantic and Nordic Seas. The variability and trends derived from the two data sources are examined, and the usefulness of the products as a proxy for subsurface conditions is discussed.


2013 ◽  
Vol 13 (2) ◽  
pp. 895-916 ◽  
Author(s):  
A. Asmi ◽  
M. Collaud Coen ◽  
J. A. Ogren ◽  
E. Andrews ◽  
P. Sheridan ◽  
...  

Abstract. We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.


Sign in / Sign up

Export Citation Format

Share Document