scholarly journals The influence of idealized surface heterogeneity on virtual turbulent flux measurements

Author(s):  
Frederik De Roo ◽  
Matthias Mauder

Abstract. The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity. The influence of surface heterogeneities on the atmospheric boundary layer has been intensively investigated since two decades. Previous studies found that heterogeneities of the boundary-layer scale or larger are most effective in influencing the boundary layer turbulence. Subsequent large-eddy simulations showed that also the turbulent fluxes are influenced by large-scale organized structures in the boundary layer. However, the precise influence of the surface characteristics on the energy imbalance of measurements in the surface layer and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on heterogeneities of length scales of the kilometer scale, and length scales of one order of magnitude smaller. For heterogeneities of these two types, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g. downdraft region, updraft region, at border between domains, etc.). Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature.

2018 ◽  
Vol 18 (7) ◽  
pp. 5059-5074 ◽  
Author(s):  
Frederik De Roo ◽  
Matthias Mauder

Abstract. The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy partitioning on the tower location. For the hectometer scale, we do not notice such a clear dependence. Finally, we seek correlators for the energy balance ratio in the simulations. The correlation with the friction velocity is less pronounced than previously found, but this is likely due to our concentration on effectively strongly to freely convective conditions.


2019 ◽  
Vol 76 (8) ◽  
pp. 2309-2334 ◽  
Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

Abstract Given comparable background vertical wind shear (VWS) magnitudes, the initially imposed shear-relative low-level mean flow (LMF) is hypothesized to modify the structure and convective features of a tropical cyclone (TC). This study uses idealized Weather Research and Forecasting Model simulations to examine TC structure and convection affected by various LMFs directed toward eight shear-relative orientations. The simulated TC affected by an initially imposed LMF directed toward downshear left yields an anomalously high intensification rate, while an upshear-right LMF yields a relatively high expansion rate. These two shear-relative LMF orientations affect the asymmetry of both surface fluxes and frictional inflow in the boundary layer and thus modify the TC convection. During the early development stage, the initially imposed downshear-left LMF promotes inner-core convection because of high boundary layer moisture fluxes into the inner core and is thus favorable for TC intensification because of large radial fluxes of azimuthal mean vorticity near the radius of maximum wind in the boundary layer. However, TCs affected by various LMFs may modify the near-TC VWS differently, making the intensity evolution afterward more complicated. The TC with a fast-established eyewall in response to the downshear-left LMF further reduces the near-TC VWS, maintaining a relatively high intensification rate. For the upshear-right LMF that leads to active and sustained rainbands in the downshear quadrants, TC size expansion is promoted by a positive radial flux of eddy vorticity near the radius of 34-kt wind (1 kt ≈ 0.51 m s−1) because the vorticity associated with the rainbands is in phase with the storm-motion-relative inflow.


2020 ◽  
Author(s):  
Gokhan Kirkil

<p>WRF model provides a potentially powerful framework for coupled simulations of flow covering a wide range of<br>spatial and temporal scales via a successive grid nesting capability. Nesting can be repeated down to turbulence<br>solving large eddy simulation (LES) scales, providing a means for significant improvements of simulation of<br>turbulent atmospheric boundary layers. We will present the recent progress on our WRF-LES simulations of<br>the Perdigao Experiment performed over mountainous terrain. We performed multi-scale simulations using<br>WRF’s different Planetary Boundary Layer (PBL) parameterizations as well as Large Eddy Simulation (LES)<br>and compared the results with the detailed field measurements. WRF-LES model improved the mean flow field<br>as well as second-order flow statistics. Mean fluctuations and turbulent kinetic energy fields from WRF-LES<br>solution are investigated in several cross-sections around the hill which shows good agreement with measurements.</p>


2010 ◽  
Vol 67 (12) ◽  
pp. 3835-3853 ◽  
Author(s):  
David B. Mechem ◽  
Yefim L. Kogan ◽  
David M. Schultz

Abstract Previous large-eddy simulations (LES) of stratocumulus-topped boundary layers have been exclusively set in marine environments. Boundary layer stratocumulus clouds are also prevalent over the continent but have not been simulated previously. A suite of LES runs was performed for a case of continental post-cold-frontal stratocumulus observed by the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF), located in northern Oklahoma. Comparison with fixed, ground-based sensors necessitated an Eulerian approach in which it was necessary to supply to the model estimates of synoptic-scale advection and vertical motion, particularly given the quickly evolving, baroclinic nature of the synoptic environment. Initial analyses from the Rapid Update Cycle model supplied estimates for these forcing terms. Turbulent statistics calculated from the LES results are consistent with large-eddy observations obtained from millimeter-wave cloud radar. The magnitude of turbulence is weaker than in typical marine stratocumulus, a result attributed to highly decoupled cloud and subcloud circulations associated with a deep layer of negative buoyancy flux arising from the entrainment of warm, free-tropospheric air. Model results are highly sensitive to variations in advection of temperature and moisture and much less sensitive to changes in synoptic-scale vertical velocity and surface fluxes. For this case, moisture and temperature advection, rather than entrainment, tend to be the governing factors in the analyzed cloud system maintenance and decay. Typical boundary layer entrainment scalings applied to this case do not perform very well, a result attributed to the highly decoupled nature of the circulation. Shear production is an important part of the turbulent kinetic energy budget. The dominance of advection provides an optimistic outlook for mesoscale, numerical weather prediction, and climate models because these classes of models represent these grid-scale processes better than they do subgrid-scale processes such as entrainment.


Author(s):  
Hyeyum Hailey Shin ◽  
Domingo Muñoz-Esparza ◽  
Jeremy A. Sauer ◽  
Matthias Steiner

AbstractThis study explores the response of flow around isolated cuboid buildings to variations in the incoming turbulence arising from changes in atmospheric boundary layer (ABL) stability using a building-resolving large-eddy simulation (LES) technique with explicit representation of building effects through an immersed body force method. An extensive suite of LES for a neutral ABL with different model resolution and advection scheme configurations reveals that at least 6, 12, and 24 grid points per building side are required in order to resolve building-induced vortex shedding, mean-flow features, and turbulence statistics, respectively, with an advection scheme of a minimum of third-order. Using model resolutions that meet this requirement, 21 building-resolving simulations are performed under varying atmospheric stability conditions, from weakly stable to convective ABLs, and for different building sizes (H), resulting in LABL/H ≈ 0.1 – 10, where LABL is the integral length scale of the incoming ABL turbulence. The building-induced flow features observed in the canonical neutral ABL simulation, e.g., the upstream horseshoe vortex and the downstream arch vortex, gradually weaken with increasing surface-driven convective instability due to the enhancement of background turbulent mixing. As a result, two local turbulence kinetic energy peaks on the lateral side of the building in non-convective cases are merged into a single peak in strong convective cases. By considering the ABL turbulence scale and building size altogether, it is shown that the building impact decreases with increasing LABL/H, as coherent turbulent structures in the ABL become more dominant over a building-induced flow response for LABL/H > 1.


Author(s):  
XIAOZHOU RUAN ◽  
ANDREW F. THOMPSON ◽  
JOHN R. TAYLOR

AbstractThe influence of a sloping bottom and stratification on the evolution of an oceanic bottom boundary layer (BBL) in the presence of a mean flow is explored. As a complement to an earlier study (Ruan et al. 2019) examining Ekman arrest in a downslope regime, this paper describes turbulence and BBL dynamics during Ekman arrest in the upslope regime. In the upslope regime, an enhanced stratification develops in response to the upslope Ekman transport and suppresses turbulence. Using a suite of large-eddy simulations, we show that the BBL evolution can be described in a self-similar framework based on a non-dimensional number X/Xa. This non-dimensional number is defined as the ratio between the lateral displacement of density surfaces across the slope X and a displacement Xa required for Ekman arrest; the latter can be predicted from external parameters. Additionally, the evolution of the depth-integrated potential vorticity is considered in both upslope and downslope regimes. The PV destruction rate in the downslope regime is found to be twice the production rate in the upslope regime, using the same definition for the bottom mixed layer thickness. It is shown that this asymmetry is associated with the depth scale over which turbulent stresses are active. These results are a step towards improving parameterizations of BBL properties and evolution over sloping topography in coarse-resolution ocean models.


2010 ◽  
Vol 10 (7) ◽  
pp. 17815-17851 ◽  
Author(s):  
N. A. Brunsell ◽  
D. B. Mechem ◽  
M. C. Anderson

Abstract. The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC) field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model. The simulations exhibit little variation in net radiation. Rather, a change in the partitioning of the surface energy between sensible and latent heat flux is responsible for differences in boundary layer dynamics. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to surface heterogeneity than water vapor, which implies that the role of surface heterogeneity in modifying the local temperature gradients in order to maximize convective heat fluxes. More homogeneous surface conditions, on the other hand, tend to maximize latent heat flux. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w, T and q) and associated cospectra (w'T', w'q' and T'q'), however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the mean wind speed.


2021 ◽  
Author(s):  
Carolyn Branecky Begeman ◽  
Xylar Asay-Davis ◽  
Luke Van Roekel

Abstract. Small scale, turbulent flow below ice shelves is regionally isolated and difficult to measure and simulate. Yet these small scale processes, which regulate heat transfer between the ocean and ice shelves, can affect sea-level rise by altering the ability of Antarctic ice shelves to “buttress” ice flux to the ocean. In this study, we improve our understanding of turbulence below ice shelves by means of large-eddy simulations at sub-meter resolution, capturing boundary layer mixing at scales intermediate between laboratory experiments or direct numerical simulations and regional or global ocean circulation models. Our simulations feature the development of an ice-shelf ocean boundary layer through dynamic ice melting in a regime with low thermal driving, low ice-shelf basal slope, and strong shear driven by the geostrophic flow. We present a preliminary assessment of existing ice-shelf basal melt parameterizations adopted in single component or coupled ice-sheet and ocean models on the basis of a small parameter study. While the parameterized linear relationship between ice-shelf melt rate and far-field ocean temperature appears to be robust, we point out a little-considered relationship between ice-shelf basal slope and melting worthy of further study.


Sign in / Sign up

Export Citation Format

Share Document