scholarly journals Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

2010 ◽  
Vol 10 (7) ◽  
pp. 17815-17851 ◽  
Author(s):  
N. A. Brunsell ◽  
D. B. Mechem ◽  
M. C. Anderson

Abstract. The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC) field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model. The simulations exhibit little variation in net radiation. Rather, a change in the partitioning of the surface energy between sensible and latent heat flux is responsible for differences in boundary layer dynamics. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to surface heterogeneity than water vapor, which implies that the role of surface heterogeneity in modifying the local temperature gradients in order to maximize convective heat fluxes. More homogeneous surface conditions, on the other hand, tend to maximize latent heat flux. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w, T and q) and associated cospectra (w'T', w'q' and T'q'), however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the mean wind speed.

2011 ◽  
Vol 11 (7) ◽  
pp. 3403-3416 ◽  
Author(s):  
N. A. Brunsell ◽  
D. B. Mechem ◽  
M. C. Anderson

Abstract. The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC) field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model (approximately 0.25, 1.2 and 9.5 times boundary layer height). The simulations exhibit little variation in net radiation. Rather, there is a pronounced change in the partitioning of the surface energy between sensible and latent heat flux. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The simulations showed approximately 50 Wm−2 difference in the spatially averaged latent heat flux. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to variations in surface heterogeneity than water vapor, which implies that the role of surface heterogeneity may be to maximize convective heat fluxes through modifying and maintaining local temperature gradients. More homogeneous surface conditions (i.e. smaller length scales), on the other hand, tend to maximize latent heat flux. The intermediate scale (1600 m) this does not hold, and is a more complicated interaction of scales. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w~, T~ and q~) and associated cospectra (w~T~, w~q~ and T~q~), however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the mean wind speed.


2019 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
Si Gao ◽  
Shengbin Jia ◽  
Yanyu Wan ◽  
Tim Li ◽  
Shunan Zhai ◽  
...  

The possible role of air–sea latent heat flux (LHF) in tropical cyclone (TC) genesis over the western North Pacific (WNP) is investigated using state-of-the-art satellite and analysis datasets. The authors conducted composite analyses of several meteorological variables after identifying developing and non-developing tropical disturbances from June to October of the period 2000 to 2009. Compared to the non-developing disturbances, increased LHF underlying the developing disturbances enhances boundary–layer specific humidity. The secondary circulation then transports more boundary–layer moisture inward and upward and, thus, induces a stronger moist core in the middle troposphere. Accordingly, the air in the core region ascends following a warmer moist adiabat than that in the environment and results in a stronger upper-level warm core, which is associated with a stronger near-surface tangential wind based on the thermal wind balance. This enlarges the magnitude and negative radial gradient of LHF and, thereby, further increases boundary–layer specific humidity. A tropical depression forms when the near-surface tangential wind increases to a certain extent as a result of the continuing positive feedback between near-surface wind and LHF. The results suggest an important role of wind-driven LHF in TC genesis over the WNP.


Author(s):  
Youtong Zheng ◽  
Haipeng Zhang ◽  
Zhanqing Li

AbstractSurface latent heat flux (LHF) has been considered as the determinant driver of the stratocumulus-to-cumulus transition (SCT). The distinct signature of the LHF in driving the SCT, however, has not been found in observations. This motivates us to ask: how determinant is the LHF to SCT? To answer it, we conduct large-eddy simulations in a Lagrangian setup in which the sea-surface temperature increases over time to mimic a low-level cold air advection. To isolate the role of LHF, we conduct a mechanism-denial experiment in which the LHF adjustment is turned off. The simulations confirm the indispensable roles of LHF in sustaining (although not initiating) the boundary layer decoupling (first stage of SCT) and driving the cloud regime transition (second stage of SCT). However, using theoretical arguments and LES results, we show that decoupling can happen without the need for LHF to increase as long as the capping inversion is weak enough to ensure high entrainment efficiency. The high entrainment efficiency alone cannot sustain the decoupled state without the help of LHF adjustment, leading to the recoupling of the boundary layer that eventually becomes cloud-free. Interestingly, the stratocumulus sheet is sustained longer without LHF adjustment. The mechanisms underlying the findings are explained from the perspectives of cloud-layer budgets of energy (first stage) and liquid water path (second stage).


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


1998 ◽  
Vol 55 (11) ◽  
pp. 1909-1927 ◽  
Author(s):  
Weiqing Qu ◽  
A. Henderson-Sellers ◽  
A. J. Pitman ◽  
T. H. Chen ◽  
F. Abramopoulos ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Minghao Yang ◽  
Ruiting Zuo ◽  
Liqiong Wang ◽  
Xiong Chen

The ability of RegCM4.5 using land surface scheme CLM4.5 to simulate the physical variables related to land surface state was investigated. The NCEP-NCAR reanalysis data for the period 1964–2003 were used to drive RegCM4.5 to simulate the land surface temperature, precipitation, soil moisture, latent heat flux, and surface evaporation. Based on observations and reanalysis data, a few land surface variables were analyzed over China. The results showed that some seasonal features of land surface temperature in summer and winter as well as its magnitude could be simulated well. The simulation of precipitation was sensitive to region and season. The model could, to a certain degree, simulate the seasonal migration of rainband in East China. The overall spatial distribution of the simulated soil moisture was better in winter than in summer. The simulation of latent heat flux was also better in winter. In summer, the latent heat flux bias mainly arose from surface evaporation bias in Northwest China, and it primarily arose from vegetation evapotranspiration bias in South China. In addition, the large latent heat flux bias in South China during summer was probably due to less precipitation generated in the model and poor representation of vegetation cover in this region.


Author(s):  
Cathy Hohenegger

Even though many features of the vegetation and of the soil moisture distribution over Africa reflect its climatic zones, the land surface has the potential to feed back on the atmosphere and on the climate of Africa. The land surface and the atmosphere communicate via the surface energy budget. A particularly important control of the land surface, besides its control on albedo, is on the partitioning between sensible and latent heat flux. In a soil moisture-limited regime, for instance, an increase in soil moisture leads to an increase in latent heat flux at the expanse of the sensible heat flux. The result is a cooling and a moistening of the planetary boundary layer. On the one hand, this thermodynamically affects the atmosphere by altering the stability and the moisture content of the vertical column. Depending on the initial atmospheric profile, convection may be enhanced or suppressed. On the other hand, a confined perturbation of the surface state also has a dynamical imprint on the atmospheric flow by generating horizontal gradients in temperature and pressure. Such gradients spin up shallow circulations that affect the development of convection. Whereas the importance of such circulations for the triggering of convection over the Sahel region is well accepted and well understood, the effect of such circulations on precipitation amounts as well as on mature convective systems remains unclear. Likewise, the magnitude of the impact of large-scale perturbations of the land surface state on the large-scale circulation of the atmosphere, such as the West African monsoon, has long been debated. One key issue is that such interactions have been mainly investigated in general circulation models where the key involved processes have to rely on uncertain parameterizations, making a definite assessment difficult.


2010 ◽  
Vol 4 (Special Issue 2) ◽  
pp. S49-S58 ◽  
Author(s):  
J. Brom ◽  
J. Procházka ◽  
A. Rejšková

The dissipation of solar energy and consequently the formation of the hydrological cycle are largely dependent on the structural and optical characteristics of the land surface. In our study, we selected seven units with different types of vegetation in the Mlýnský and Horský catchments (South-Eastern part of the Šumava Mountains, Czech Republic) for the assessment of the differences in their functioning expressed through the surface temperature, humidity, and energy dissipation. For our analyses, we used Landsat 5 TM satellite data from June 25<SUP>th</SUP>, 2008. The results showed that the microclimatic characteristics and energy fluxes varied in different units according to their vegetation characteristics. A cluster analysis of the mean values was used to divide the vegetation units into groups according to their functional characteristics. The mown meadows were characterised by the highest surface temperature and sensible heat flux and the lowest humidity and latent heat flux. On the contrary, the lowest surface temperature and sensible heat flux and the highest humidity and latent heat flux were found in the forest. Our results showed that the climatic and energetic features of the land surface are related to the type of vegetation. We state that the spatial distribution of different vegetation units and the amount of biomass are crucial variables influencing the functioning of the landscape.


2010 ◽  
Vol 23 (21) ◽  
pp. 5771-5789 ◽  
Author(s):  
Daniel J. Vimont

Abstract The dynamics of thermodynamically coupled disturbances in the tropics that bear a strong resemblance to observed meridional mode variations are investigated using two simple linear coupled models. Both models involve an ocean equation coupled to the atmosphere via the linearized effect of zonal wind variations on the surface bulk latent heat flux. The two models differ in their atmospheric components, which consist of (i) a Gill–Matsuno style model of the free troposphere in which atmospheric heating is parameterized to be linearly proportional to sea surface temperature and (ii) a reduced-gravity model of the tropical boundary layer in which SST anomalies are associated with hydrostatic pressure perturbations throughout the boundary layer. Both atmospheric models follow the standard shallow-water equations on an equatorial beta plane. Growth rates and propagation of coupled disturbances are calculated and diagnosed via eigenanalysis of the linear models and singular value decomposition of the Green’s function for each model. It is found that the eigenvectors of either model are all damped, not orthogonal, and not particularly meaningful in understanding observed tropical coupled variability. The nonnormality of the system, however, leads to transient growth over a time period of about 100 days (based on the choice of parameters in this study). The idealized initial and final conditions that experience this transient growth resemble observed tropical meridional mode variations and tend to propagate equatorward and westward in accord with findings from previous theoretical and modeling studies. Instantaneous growth rates and propagation characteristics of idealized transient disturbances are diagnosed via the linearized atmospheric potential vorticity equation and via propagation characteristics of atmospheric equatorial Rossby waves. Constraints on the poleward extent of initial conditions or imposed steady forcing that can lead to tropical meridional mode variations are identified through analysis of the steady coupled equations. Three constraints limit the poleward extent of forcing that can generate tropical meridional mode variations: (i) a dynamical constraint imposed by the damping rate of the temperature equation as well as the propagation speed of the mode along its wave characteristic; (ii) a constraint imposed by the effectiveness of zonal wind variations in generating surface latent heat flux anomalies; and (iii) the surface moisture convergence, which limits the poleward extent and strength of ocean to atmosphere coupling.


Sign in / Sign up

Export Citation Format

Share Document