scholarly journals Detectability of the Impacts of Ozone Depleting Substances and Greenhouse Gases upon Stratospheric Ozone Accounting for Nonlinearities in Historical Forcings

2017 ◽  
Author(s):  
Justin Bandoro ◽  
Susan Solomon ◽  
Benajmin D. Santer ◽  
Douglas E. Kinnison ◽  
Michael J. Mills

Abstract. We perform a formal attribution study of upper and lower stratospheric ozone changes using observations together with simulations from the Whole Atmosphere Community Climate Model. Historical model simulations were used to estimate the zonal-mean response patterns (fingerprints) to combined forcing by ozone depleting substances (ODS) and well-mixed greenhouse gases (GHG), as well as to the individual forcing by each factor. Trends in the similarity between the searched-for fingerprints and homogenized observations of stratospheric ozone were compared to trends in pattern similarity between the fingerprints and the internally and naturally generated variability inferred from long control runs. This yields estimated signal-to-noise (S/N) ratios for each of the three fingerprints (ODS, GHG, and ODS+GHG). In both the upper stratosphere (defined in this paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa), the spatial fingerprints of the ODS+GHG and ODS only patterns were consistently detectable not only during the era of maximum ozone depletion, but also throughout the observational record (1984–2016). Furthermore, we develop a fingerprint attribution method to account for forcings whose time evolutions are markedly nonlinear over the observational record. When the nonlinearity of the time evolution of the ODS and ODS+GHG signals are used in the trend regression, we find that the S/N ratios obtained with the stratospheric ODS and ODS+GHG fingerprints are enhanced relative to standard linear trend analysis. With this method, the complete observational record can be used in the S/N analysis, without applying piece-wise linear regression and introducing arbitrary break points. The GHG-driven fingerprint of ozone changes was not statistically identifiable in the either the upper or lower stratospheric SWOOSH data, irrespective of the method used. Use of the nonlinear signal method, instead of directly operating on ozone trends, also reduces the detection time – the estimate of the date at which ODS and GHG impacts on ozone can be formally identified. In the WACCM future simulations, the GHG signal is statistically identifiable between 2020–2030. Our findings demonstrate the importance of continued stratospheric ozone monitoring to improve estimates of the contributions of ODS and GHG forcing to global changes in stratospheric ozone.

2018 ◽  
Vol 18 (1) ◽  
pp. 143-166 ◽  
Author(s):  
Justin Bandoro ◽  
Susan Solomon ◽  
Benjamin D. Santer ◽  
Douglas E. Kinnison ◽  
Michael J. Mills

Abstract. We perform a formal attribution study of upper- and lower-stratospheric ozone changes using observations together with simulations from the Whole Atmosphere Community Climate Model. Historical model simulations were used to estimate the zonal-mean response patterns (“fingerprints”) to combined forcing by ozone-depleting substances (ODSs) and well-mixed greenhouse gases (GHGs), as well as to the individual forcing by each factor. Trends in the similarity between the searched-for fingerprints and homogenized observations of stratospheric ozone were compared to trends in pattern similarity between the fingerprints and the internally and naturally generated variability inferred from long control runs. This yields estimated signal-to-noise (S∕N) ratios for each of the three fingerprints (ODS, GHG, and ODS + GHG). In both the upper stratosphere (defined in this paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa), the spatial fingerprints of the ODS + GHG and ODS-only patterns were consistently detectable not only during the era of maximum ozone depletion but also throughout the observational record (1984–2016). We also develop a fingerprint attribution method to account for forcings whose time evolutions are markedly nonlinear over the observational record. When the nonlinearity of the time evolution of the ODS and ODS + GHG signals is accounted for, we find that the S∕N ratios obtained with the stratospheric ODS and ODS + GHG fingerprints are enhanced relative to standard linear trend analysis. Use of the nonlinear signal detection method also reduces the detection time – the estimate of the date at which ODS and GHG impacts on ozone can be formally identified. Furthermore, by explicitly considering nonlinear signal evolution, the complete observational record can be used in the S∕N analysis, without applying piecewise linear regression and introducing arbitrary break points. The GHG-driven fingerprint of ozone changes was not statistically identifiable in either the upper- or lower-stratospheric SWOOSH data, irrespective of the signal detection method used. In the WACCM simulations of future climate change, the GHG signal is statistically identifiable between 2020 and 2030. Our findings demonstrate the importance of continued stratospheric ozone monitoring to improve estimates of the contributions of ODS and GHG forcing to global changes in stratospheric ozone.


2020 ◽  
Author(s):  
Sergei Smyshlyaev ◽  
Polina Blakitnaya ◽  
Maxim Motsakov ◽  
Vener Galin

<p>The INM RAS – RSHU chemistry-climate model of the lower and middle atmosphere is used to compare the role of natural and anthropogenic factors in the observed and expected variability of stratospheric ozone. Numerical experiments have been carried out on several scenarios of separate and combined effects of solar activity, stratospheric aerosol, sea surface temperature, greenhouse gases, and ozone-depleting substances emissions on ozone for the period from 1979 to 2050. Simulations for the past and present periods are compared to the results of ground-based and satellite observations, as well as MERRA and ERA-Interim re-analysis. Estimation of future ozone changes are based on different scenarios of changes in solar activity and emissions of ozone-depleting substances and greenhouse gases, as well as the possibility of large volcanic aerosol emissions at different periods of time.</p>


2010 ◽  
Vol 10 (4) ◽  
pp. 9647-9694 ◽  
Author(s):  
D. A. Plummer ◽  
J. F. Scinocca ◽  
T. G. Shepherd ◽  
M. C. Reader ◽  
A. I. Jonsson

Abstract. A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs) and Ozone Depleting Substances (ODSs). The experiments are designed to investigate the mechanisms by which GHGs and ODSs affect the evolution of ozone, including changes in the Brewer-Dobson circulation of the stratosphere and cooling of the upper stratosphere by CO2. Separating the effects of GHGs and ODSs on ozone, we find the decrease in upper stratospheric ozone from ODSs up to the year 2000 is approximately 30% larger than the actual decrease in ozone due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in upper stratospheric ozone. Changes below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation, while globally averaged the amount of ozone below 20 hPa decreases over the 21st century. Further analysis by linear regression shows that changes associated with GHGs do not appreciably alter the recovery of stratospheric ozone from the effects of ODSs; over much of the stratosphere ozone recovery follows the decline of halogen concentrations within statistical uncertainty, though the lower polar stratosphere of the Southern Hemisphere is an exception with ozone concentrations recovering more slowly than indicated by the halogen concentrations. These results also reveal the degree to which climate change, and stratospheric CO2 cooling in particular, mutes the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.


2010 ◽  
Vol 10 (18) ◽  
pp. 8803-8820 ◽  
Author(s):  
D. A. Plummer ◽  
J. F. Scinocca ◽  
T. G. Shepherd ◽  
M. C. Reader ◽  
A. I. Jonsson

Abstract. A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs) and Ozone Depleting Substances (ODSs). The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.


2015 ◽  
Vol 15 (6) ◽  
pp. 9253-9291 ◽  
Author(s):  
S. Meul ◽  
S. Oberländer-Hayn ◽  
J. Abalichin ◽  
U. Langematz

Abstract. In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealized set of timeslice simulations with the chemistry–climate model (CCM) EMAC. Nonlinearity leads to a net reduction of ozone decrease throughout the stratosphere, with a maximum of 1.2% at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1% due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region, but increases in the SH midlatitudes.


2015 ◽  
Vol 15 (12) ◽  
pp. 6897-6911 ◽  
Author(s):  
S. Meul ◽  
S. Oberländer-Hayn ◽  
J. Abalichin ◽  
U. Langematz

Abstract. In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealised set of time slice simulations with the chemistry-climate model EMAC. Due to nonlinearity the past ozone loss is diminished throughout the stratosphere, with a maximum reduction of 1.2 % at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1 % due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature-induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region but increases in the SH midlatitudes. The existence of nonlinearities implies that future ozone change due to ODS decline slightly depends on the prevailing GHG concentrations. Therefore the future ozone evolution will not simply be a reversal of the past.


2017 ◽  
Author(s):  
Antara Banerjee ◽  
Amanda C. Maycock ◽  
John A. Pyle

Abstract. The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model. Projected measures to improve air-quality through reductions in tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 Wm−2. This is opposed by a positive ozone RF of 0.07 Wm−2 due to future decreases in ODSs, which is mainly driven by an increase in tropospheric ozone through stratosphere-to-troposphere exchange. An increase in methane abundance by more than a factor of two (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.19 Wm−2, which would greatly outweigh the climate benefits of tropospheric non-methane ozone precursor reductions. A third of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gas concentrations, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.06 Wm−2) for RCP4.5 and a negative RF (−0.07 Wm−2) for the RCP8.5 scenario. This dependence arises from differences in the contribution to RF from stratospheric ozone changes.


2021 ◽  
Author(s):  
Jia Jia ◽  
Antti Kero ◽  
Niilo Kalakoski ◽  
Monika E. Szeląg ◽  
Pekka T. Verronen

<p>Recent studies reported up to a 10 % average decrease of lower stratospheric ozone at ∼ 20 km altitude following solar proton events (SPEs), based on superposed epoch analysis (SEA) of ozonesonde anomalies. Our study uses 49 SPEs that occurred after the launch of Aura MLS (2004–now) and 177 SPEs that occurred in the WACCM-D (Whole Atmosphere Community Climate Model with D-region ion chemistry) simulation period (1989–2012) to evaluate Arctic polar atmospheric ozone changes following SPEs. At the mesospheric altitudes a statistically significant ozone depletion is present. At the lower stratosphere (<25 km), SEA of the satellite dataset provides no solid evidence of any average direct SPE impact on ozone. In the individual case studies, we find only one potential case (January 2005) in which the lower-stratospheric ozone level was significantly decreased after the SPE onset (in both model simulation and MLS observation data). However, similar decreases could not be identified in other SPEs of similar or larger magnitude. We find a very good overall consistency between WACCM-D simulations and MLS observations of SPE-driven ozone anomalies both on average and for the individual cases, including case in January 2005.</p>


2021 ◽  
Author(s):  
Ewa Bednarz ◽  
Ryan Hossaini ◽  
Luke Abraham ◽  
Peter Braesicke ◽  
Martyn Chipperfield

<p>The emissions of most long-lived halogenated ozone-depleting substances (ODSs) are now decreasing, owing to controls on their production introduced by Montreal Protocol and its amendments. However, short-lived halogenated compounds can also have substantial impact on atmospheric chemistry, including stratospheric ozone, particularly if emitted near climatological uplift regions. It has recently become evident that emissions of some chlorinated very short-lived species (VSLSs), such as chloroform (CHCl<sub>3</sub>) and dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>), could be larger than previously believed and increasing, particularly in Asia. While these may exert a significant influence on atmospheric chemistry and climate, their impacts remain poorly characterised. </p><p> </p><p>We address this issue using the UM-UKCA chemistry-climate model (CCM). While not only the first, to our knowledge, model study addressing this problem using a CCM, it is also the first such study employing a whole atmosphere model, thereby simulating the tropospheric Cl-VSLSs emissions and the resulting stratospheric impacts in a fully consistent manner. We use a newly developed Double-Extended Stratospheric-Tropospheric (DEST) chemistry scheme, which includes emissions of all major chlorinated and brominated VSLSs alongside an extended treatment of long-lived ODSs.</p><p> </p><p>We examine the impacts of rising Cl-VSLSs emissions on atmospheric chlorine tracers and ozone, including their long-term trends. We pay particular attention to the role of ‘nudging’, as opposed to the free-running model set up, for the simulated Cl-VSLSs impacts, thereby demostrating the role of atmospheric dynamics in modulating the atmospheric responses to Cl-VSLSs. In addition, we employ novel estimates of Cl-VSLS emissions over the recent past and compare the results with the simulations that prescribe Cl-VSLSs using simple lower boundary conditions. This allows us to demonstrate the impact such choice has on the dominant location and seasonality of the Cl-VSLSs transport into the stratosphere.</p>


2019 ◽  
Vol 32 (5) ◽  
pp. 1411-1418 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Katinka Bellomo

It is widely appreciated that ozone-depleting substances (ODS), which have led to the formation of the Antarctic ozone hole, are also powerful greenhouse gases. In this study, we explore the consequence of the surface warming caused by ODS in the second half of the twentieth century over the Indo-Pacific Ocean, using the Whole Atmosphere Chemistry Climate Model (version 4). By contrasting two ensembles of chemistry–climate model integrations (with and without ODS forcing) over the period 1955–2005, we show that the additional greenhouse effect of ODS is crucial to producing a statistically significant weakening of the Walker circulation in our model over that period. When ODS concentrations are held fixed at 1955 levels, the forcing of the other well-mixed greenhouse gases alone leads to a strengthening—rather than weakening—of the Walker circulation because their warming effect is not sufficiently strong. Without increasing ODS, a surface warming delay in the eastern tropical Pacific Ocean leads to an increase in the sea surface temperature gradient between the eastern and western Pacific, with an associated strengthening of the Walker circulation. When increasing ODS are added, the considerably larger total radiative forcing produces a much faster warming in the eastern Pacific, causing the sign of the trend to reverse and the Walker circulation to weaken. Our modeling result suggests that ODS may have been key players in the observed weakening of the Walker circulation over the second half of the twentieth century.


Sign in / Sign up

Export Citation Format

Share Document