scholarly journals MAX-DOAS measurements of NO<sub>2</sub>, SO<sub>2</sub>, HCHO and BrO at the Mt. Waliguan WMO/GAW global baseline station in the Tibetan Plateau

2020 ◽  
Author(s):  
Jianzhong Ma ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Junli Jin ◽  
Siyang Cheng ◽  
...  

Abstract. Mt. Waliguan Observatory (WLG) is a World Meteorological Organization (WMO)/Global Atmosphere Watch (GAW) global baseline station in China. WLG is located at the northeastern part of the Tibetan plateau (36°17' N, 100°54' E, 3816 m a.s.l.) and has a representativeness of the pristine atmosphere over the Eurasian continent. We made long-term ground-based MAX-DOAS measurements at WLG during the years 2012–2015. In this study, we retrieve the differential slant column densities (dSCDs) and estimate the tropospheric background mixing ratios of different trace gases, including NO2, SO2, HCHO and BrO, using the measured spectra at WLG. We find averaging of 10 original spectra to be an optimum option for reducing both the statistical error of the spectral retrieval and systematic errors in the analysis. We retrieve the dSCDs of NO2, SO2, HCHO and BrO from measured spectra at different elevation angles under clear sky and low aerosol load conditions at WLG. By performing radiative transfer simulations with the model TRACY-2, we establish approximate relationships between the trace gas dSCDs at 1° elevation angle and the corresponding average tropospheric background volume mixing ratios. Mixing ratios of these trace gases in the lower troposphere over WLG are estimated to be between about 5 ppt (winter) and 70 ppt (summer) for NO2, fall below 0.5 ppb for SO2, range between about 0.3 and 0.7 ppb for HCHO, and be close to ~ 0 ppt for BrO. Our study provides valuable information and data set for further investigating tropospheric background levels of these trace gases and their relationship to anthropogenic activities.

2020 ◽  
Vol 20 (11) ◽  
pp. 6973-6990 ◽  
Author(s):  
Jianzhong Ma ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Junli Jin ◽  
Siyang Cheng ◽  
...  

Abstract. Mt. Waliguan Observatory (WLG) is a World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) global baseline station in China. WLG is located at the northeastern part of the Tibetan Plateau (36∘17′ N, 100∘54′ E, 3816 m a.s.l.) and is representative of the pristine atmosphere over the Eurasian continent. We made long-term ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at WLG during the period 2012–2015. In this study, we retrieve the differential slant column densities (dSCDs) and estimate the tropospheric background mixing ratios of different trace gases, including NO2, SO2, HCHO, and BrO, using the measured spectra at WLG. Averaging of 10 original spectra is found to be an “optimum option” for reducing both the statistical error of the spectral retrieval and systematic errors in the analysis. The dSCDs of NO2, SO2, HCHO, and BrO under clear-sky and low-aerosol-load conditions are extracted from measured spectra at different elevation angles at WLG. By performing radiative transfer simulations with the model TRACY-2, we establish approximate relationships between the trace gas dSCDs at 1∘ elevation angle and the corresponding average tropospheric background volume mixing ratios. Mixing ratios of these trace gases in the lower troposphere over WLG are estimated to be in a range of about 7 ppt (January) to 100 ppt (May) for NO2, below 0.5 ppb for SO2, between 0.4 and 0.9 ppb for HCHO, and lower than 0.3 ppt for BrO. The chemical box model simulations constrained by the NO2 concentration from our MAX-DOAS measurements show that there is a little net ozone loss (−0.8 ppb d−1) for the free-tropospheric conditions and a little net ozone production (0.3 ppb d−1) for the boundary layer conditions over WLG during summertime. Our study provides valuable information and data sets for further investigating tropospheric chemistry in the background atmosphere and its links to anthropogenic activities.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2017 ◽  
Author(s):  
Xiufeng Yin ◽  
Shichang Kang ◽  
Benjamin de Foy ◽  
Zhiyuan Cong ◽  
Jiali Luo ◽  
...  

Abstract. Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present long-term measurements for ~ 5 years (January 2011 to October 2015) of surface ozone mixing ratios at Nam Co Station, which is a regional background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions and potential local vertical mixing. Model results indicate that the study site is affected by the surrounding areas in different seasons and that air masses from the northern Tibetan Plateau lead to increased ozone levels in the summer. In contrast to the surface ozone levels at the edges of the Tibetan Plateau, those at Nam Co Station are less affected by stratospheric intrusions and human activities which makes Nam Co Station representative of vast background areas in the central Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites in the Tibetan Plateau and beyond, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a reference for model simulations in the future.


2020 ◽  
Vol 9 (1) ◽  
pp. 231-250
Author(s):  
Birendra Prasad Sharma ◽  
Subash Adhikari ◽  
Ganesh Paudel ◽  
Namita Paudel Adhikari

Microorganisms, as successive members of the food web, play a major role in biological processes. They are found in environments ranging from extremely hot to harsh cold temperatures. Thus, the study of bacterial communities in various ecosystems is of great concern around the world. The glacier is one of the parts of the cryosphere, which is the key component and sensitive indicator of climatic and environmental changes. A glacial ecosystem is a habitat for various microorganisms, i.e., autotrophic and heterotrophic. Different physicochemical parameters like temperature, pH, electrical conductivity, the input of nutrient concentration, precipitation, ions concentrations, etc. influence the microbial diversity in the glacial ecosystem for their metabolic processes. Successive studies of bacterial communities in the Himalayan glacial ecosystem are reliable proxies to know the relationships between microbial biodiversity and climate change since the Himalayan glaciers are free from anthropogenic activities. After the study of the relevant literature, it is clear that the researches. have been carried out in the Polar Regions, and the Tibetan plateau mainly focused on the glacial ecosystem. This review concluded that Proteobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Verrucomicrobia, and Actinobacteria were the most dominant bacterial phyla via 16S rRNA clone libraries and Illumina MiSeq. Alter in landscapes, nutrient cycles, exposure of light, shifting on the concentration of different elements, glacier retreats were the major components for survival strength of dominant bacterial phyla. However, limited studies on the glacial ecosystem of the Himalayas have been published. Thus, the study of bacterial abundance, diversity, and community in the Himalayas will help plug this research gap.


2017 ◽  
Author(s):  
Maarten Lupker ◽  
Jérôme Lavé ◽  
Christian France-Lanord ◽  
Marcus Christl ◽  
Didier Bourlès ◽  
...  

Abstract. The Tsangpo-Brahmaputra River drains the eastern part of the Himalayan range, flowing from the Tibetan Plateau through the eastern Himalayan syntaxis and downstream to the Indo-Gangetic floodplain. As such it is a unique natural laboratory to study how denudation and sediment production processes are transferred to river detrital signals. In this study, we present a new 10Be data set to constrain denudation rates across the catchment and to quantify the impact of rapid erosion within the syntaxis region on cosmogenic nuclide budgets and signals. 10Be denudation rates span around two orders of magnitude across the catchments (ranging from 0.03 mm/yr to > 4 mm/yr) and sharply increase as the Tsangpo-Brahmaputra flows across the eastern Himalaya. The increase in denudation rates however occurs ~ 150 km downstream of the Namche Barwa-Gyala Peri massif (NBGPm), an area which has been previously characterized by extremely high erosion and exhumation rates. We suggest that this downstream lag is mainly due to the physical abrasion of coarse grained, low 10Be concentration, landslide material produced within the syntaxis that dilutes the upstream high concentration 10Be flux from the Tibetan Plateau only after abrasion has transferred sediment to the studied sand fraction. A simple abrasion model produces typical lag distances of 50 to 150 km compatible with our observations. Abrasion effects reduce the spatial resolution over which denudation can be constrained in the eastern Himalayan syntaxis. In addition, we also highlight that denudation rate estimates are dependent on the sediment connectivity, storage and quartz content of the upstream Tibetan Plateau part of the catchment which tends to lead to an overestimation of downstream denudations rates. Taking these effects into account we estimate a denudation rates of ca. 2 to 5 mm/yr for the entire syntaxis and ca. 4 to 28 mm/yr for the NBGPm, which is significantly higher than other to other large catchments. Overall, 10Be concentrations measured at the outlet of the Tsangpo-Brahmaputra in Bangladesh suggest a sediment flux between 780 and 1430 Mt/yr equivalent to a denudation rate between 0.7 and 1.2 mm/yr for the entire catchment.


2007 ◽  
Vol 8 (4) ◽  
pp. 770-789 ◽  
Author(s):  
Guoxiong Wu ◽  
Yimin Liu ◽  
Qiong Zhang ◽  
Anmin Duan ◽  
Tongmei Wang ◽  
...  

Abstract This paper attempts to provide some new understanding of the mechanical as well as thermal effects of the Tibetan Plateau (TP) on the circulation and climate in Asia through diagnosis and numerical experiments. The air column over the TP descends in winter and ascends in summer and regulates the surface Asian monsoon flow. Sensible heating on the sloping lateral surfaces appears from the authors’ experiments to be the major driving source. The retarding and deflecting effects of the TP in winter generate an asymmetric dipole zonal-deviation circulation, with a large anticyclone gyre to the north and a cyclonic gyre to the south. Such a dipole deviation circulation enhances the cold outbreaks from the north over East Asia, results in a dry climate in south Asia and a moist climate over the Indochina peninsula and south China, and forms the persistent rainfall in early spring (PRES) in south China. In summer the TP heating generates a cyclonic spiral zonal-deviation circulation in the lower troposphere, which converges toward and rises over the TP. It is shown that because the TP is located east of the Eurasian continent, in summertime the meridional winds and vertical motions forced by the Eurasian continental-scale heating and the TP local heating are in phase over the eastern and central parts of the continent. The monsoon in East Asia and the dry climate in middle Asia are therefore intensified.


2014 ◽  
Vol 14 (2) ◽  
pp. 913-937 ◽  
Author(s):  
B. Škerlak ◽  
M. Sprenger ◽  
H. Wernli

Abstract. In this study we use the ERA-Interim reanalysis data set from the European Centre for Medium-Range Weather Forecasts (ECMWF) and a refined version of a previously developed Lagrangian methodology to compile a global 33 yr climatology of stratosphere–troposphere exchange (STE) from 1979 to 2011. Fluxes of mass and ozone are calculated across the tropopause, pressure surfaces in the troposphere, and the top of the planetary boundary layer (PBL). This climatology provides a state-of-the-art quantification of the geographical distribution of STE and the preferred transport pathways, as well as insight into the temporal evolution of STE during the last 33 yr. We confirm the distinct zonal and seasonal asymmetry found in previous studies using comparable methods. The subset of "deep STE", where stratospheric air reaches the PBL within 4 days or vice versa, shows especially strong geographical and seasonal variations. The global hotspots for deep STE are found along the west coast of North America and over the Tibetan Plateau, especially in boreal winter and spring. An analysis of the time series reveals significant positive trends of the net downward mass flux and of deep STE in both directions, which are particularly large over North America. The downward ozone flux across the tropopause is dominated by the seasonal cycle of ozone concentrations at the tropopause and peaks in summer, when the mass flux is nearly at its minimum. For the subset of deep STE events, the situation is reversed and the downward ozone flux into the PBL is dominated by the mass flux and peaks in early spring. Thus surface ozone concentration along the west coast of North America and around the Tibetan Plateau are likely to be influenced by deep stratospheric intrusions. We discuss the sensitivity of our results on the choice of the control surface representing the tropopause, the horizontal and vertical resolution of the trajectory starting grid, and the minimum residence time τ used to filter out transient STE trajectories.


2016 ◽  
Author(s):  
X. L. Yan ◽  
J. S. Wright ◽  
X. D. Zheng ◽  
N. Livesey ◽  
H. Vömel ◽  
...  

Abstract. We validate Aura Microwave Limb Sounder (MLS) version 3 (v3) and version 4 (v4) retrievals of summertime temperature, water vapour and ozone in the upper troposphere and lower–middle stratosphere (UTLS; 10–316 hPa) against balloon soundings collected during the Study of Ozone, Aerosols and Radiation over the Tibetan Plateau (SOAR-TP). Mean v3 and v4 profiles of temperature, water vapour and ozone in this region during the measurement campaigns are almost identical through most of the stratosphere (10–68 hPa), but differ in several respects in the upper troposphere and tropopause layer. Differences in v4 relative to v3 include slightly colder mean temperatures from 100–316 hPa, smaller mean water vapour mixing ratios in the upper troposphere (215–316 hPa), and a more vertically homogeneous profile of mean ozone mixing ratios below the climatological tropopause (100–316 hPa). These changes substantially improve agreement between ozonesondes and MLS ozone retrievals in the upper troposphere, but slightly worsen existing cold and dry biases in the upper troposphere. Aura MLS v3 and v4 temperature profiles contain significant cold biases relative to collocated temperature measurements in several layers of the lower–middle stratosphere (mean biases of −1.3 to −1.8 K centered at 10–12 hPa, 26–32 hPa and 68– 83 hPa) and in the upper troposphere (mean biases of approximately −2.3±0.3 K in v3 and −2.6±0.4 K in v4 between 147 and 261 hPa). MLS v3 and v4 profiles of water vapour volume mixing ratio generally compare well with collocated measurements, with a slight dry bias (v4: −8±4%) near 22–26 hPa, a slight wet bias (v4: +12±5%) near 68–83 hPa, and a more substantial dry bias (v4: −32±11%) in the upper troposphere (121–261 hPa). MLS v3 and v4 retrievals of ozone volume mixing ratio are biased high relative to collocated ozonesondes through most of the stratosphere (18–83 hPa), but are biased low at 100 hPa. The largest positive biases in ozone retrievals are located at 83 hPa (approximately +70%); this peak was not identified by earlier validations and may be regionally or seasonally specific. Ozone retrievals are substantially improved in v4 relative to v3, with smaller biases in the tropopause layer, reduced variance below 68 hPa, larger data yields, and smoother gradients in the vertical profile of ozone biases in the upper troposphere.


2018 ◽  
Vol 10 (9) ◽  
pp. 1352 ◽  
Author(s):  
Zhaohui Luo ◽  
Wenchen Wu ◽  
Xijun Yu ◽  
Qingmei Song ◽  
Jian Yang ◽  
...  

Grasslands in the Tibetan Plateau are claimed to be sensitive and vulnerable to climate change and anthropogenic activities. Quantifying the impacts of climate change and anthropogenic activities on grassland growth is an essential step for developing sustainable grassland ecosystem management strategies under the background of climate change and increasing anthropogenic activities occurring in the plateau. Net primary productivity (NPP) is one of the key components in the carbon cycle of terrestrial ecosystems, and can serve an important role in the assessment of vegetation growth. In this study, a modified Carnegie–Ames–Stanford Approach (CASA) model, which considers remote sensing information for the estimation of the water stress coefficient and time-lag effects of climatic factors on NPP simulation, was applied to simulate NPP in the Tibetan Plateau from 2001 to 2015. Then, the spatiotemporal variations of NPP and its correlation with climatic factors and anthropogenic activities were analyzed. The results showed that the mean values of NPP were 0.18 kg∙C∙m−2∙a−1 and 0.16 kg∙C∙m−2∙a−1 for the original CASA model and modified CASA model, respectively. The modified CASA model performed well in estimating NPP compared with field-observed data, with root mean square error (RMSE) and mean absolute error (MAE) of 0.13 kg∙C∙m−2∙a−1 and 0.10 kg∙C∙m−2∙a−1, respectively. Relative RMSE and MAE decreased by 45.8% and 44.4%, respectively, compared to the original CASA model. The variation of NPP showed gradients decreasing from southeast to northwest spatially, and displayed an overall decreasing trend for the study area temporally, with a mean value of −0.02 × 10−2 kg∙C∙m−2∙a−1 due to climate change and increasing anthropogenic activities (i.e., land use and land cover change). Generally, 54% and 89% of the total pixels displayed a negative relationship between NPP and mean annual temperature, as well as annual cumulative precipitation, respectively, with average values of –0.0003 (kg∙C∙m−2 a−1)/°C and −0.254 (g∙C∙m−2∙a−1)/mm for mean annual temperature and annual cumulative precipitation, respectively. Additionally, about 68% of the total pixels displayed a positive relationship between annual cumulative solar radiation and NPP, with a mean value of 0.038 (g∙C∙m−2·a−1)/(MJ m−2). Anthropogenic activities had a negative effect on NPP variation, and it was larger than that of climate change, implying that human intervention plays a critical role in mitigating the degenerating ecosystem. In terms of human intervention, ecological destruction has a significantly negative effect on the NPP trend, and the absolute value was larger than that of ecological restoration, which has a significantly positive effect on NPP the trend. Our results indicate that ecological destruction should be paid more attention, and ecological restoration should be conducted to mitigate the overall decreasing trend of NPP in the plateau.


Sign in / Sign up

Export Citation Format

Share Document