scholarly journals Attributing land transport emissions to ozone and ozone precursors in Europe and Germany

Author(s):  
Mariano Mertens ◽  
Astrid Kerkweg ◽  
Volker Grewe ◽  
Patrick Jöckel ◽  
Robert Sausen

Abstract. Land transport is an important emission source of nitrogen oxides, carbon monoxide and volatile organic compounds, which serves as precursors for tropospheric ozone. Besides the direct negative impact of nitrogen oxides, air quality is also affected by these enhanced ozone tropospheric ozone concentrations. As ozone is radiativly active, its increase contributes to climate change. Due to the strong non-linearity of the ozone chemistry, the contribution of land transport emissions to tropospheric ozone cannot be calculated or measured directly, instead atmospheric-chemistry models equipped with specific source apportionment methods (called tagging) are required. In this study we investigate the contributions of land transport emissions to ozone and ozone precursors using the MECO(n) model system, coupling a global and a regional chemistry climate model, which are equipped with a tagging diagnostic. For the first time the effects of long range transport and regional effects of regional emissions are investigated. This is only possible by applying a tagging method simultaneously and consistently on the global and regional scale. We performed two three-year simulations with different anthropogenic emission inventories for Europe by applying our global model with two regional refinements, i.e. a European nest (50 km resolution) in the global model and a German nest (12 km resolution) in the European nest. We find contributions of land transport emissions to reactive nitrogen (NOy) near ground-level in the range of 5 to 10 nmol mol−1, corresponding to 50 to 70 % of the ground level NOy values. The largest contributions are around Paris, Southern England, Moscow, the Po Valley, and Western Germany. Carbon monoxide contributions range from 30 nmol mol−1 to more than 75 nmol mol−1 near emission hot spots such as Paris or Moscow. The contribution of land transport emissions to ozone show a strong seasonal cycle which absolute contributions of 3 nmol mol−1 during winter and 5 to 10 nmol mol−1 during summer. This corresponds to relative contributions of 8 to 10 % during winter and up to 16 % during summer. Those largest values during summer are confined to the Po Valley, while the contribution in Western Europa ranges from 12 to 14 %. The ozone contributions are robust. Only during summer the ozone contributions are slightly influenced by the emission inventory, but these differences are smaller than the range of the seasonal cycle of the contribution. This cycle is caused by a complex interplay of seasonal cycles of other emissions (e.g. biogenic) and seasonal difference of the ozone regimes. This small difference of the ozone contributions due to the emission inventory is remarkable as the precursor concentrations (NOx and CO) are much more affected by the change. In addition, our results suggest that during events with large ozone values the contribution of land transport emissions and biogenic emissions increase strongly. Here, the contribution of land transport emission peak up to 28 %. Hence, land transport is an important contributor to events of large ozone values.

2020 ◽  
Vol 20 (13) ◽  
pp. 7843-7873 ◽  
Author(s):  
Mariano Mertens ◽  
Astrid Kerkweg ◽  
Volker Grewe ◽  
Patrick Jöckel ◽  
Robert Sausen

Abstract. Land transport is an important emission source of nitrogen oxides, carbon monoxide, and volatile organic compounds. The emissions of nitrogen oxides affect air quality directly. Further, all of these emissions serve as a precursor for the formation of tropospheric ozone, thus leading to an indirect influence on air quality. In addition, ozone is radiatively active and its increase leads to a positive radiative forcing. Due to the strong non-linearity of the ozone chemistry, the contribution of emission sources to ozone cannot be calculated or measured directly. Instead, atmospheric chemistry models equipped with specific source attribution methods (e.g. tagging methods) are required. In this study we investigate the contribution of land transport emissions to ozone and ozone precursors using the MECO(n) model system (MESSy-fied ECHAM and COSMO models nested n times). This model system couples a global and a regional chemistry climate model and is equipped with a tagging diagnostic. We investigate the combined effect of long-range-transported ozone and ozone which is produced by European emissions by applying the tagging diagnostic simultaneously and consistently on the global and regional scale. We performed two simulations each covering 3 years with different anthropogenic emission inventories for Europe. We applied two regional refinements, i.e. one refinement covering Europe (50 km resolution) and one covering Germany (12 km resolution). The diagnosed absolute contributions of land transport emissions to reactive nitrogen (NOy) near ground level are in the range of 5 to 10 nmol mol−1. This corresponds to relative contributions of 50 % to 70 %. The largest absolute contributions appear around Paris, southern England, Moscow, the Po Valley, and western Germany. The absolute contributions to carbon monoxide range from 30 nmol mol−1 to more than 75 nmol mol−1 near emission hot-spots such as Paris or Moscow. The ozone which is attributed to land transport emissions shows a strong seasonal cycle with absolute contributions of 3 nmol mol−1 during winter and 5 to 10 nmol mol−1 during summer. This corresponds to relative contributions of 8 % to 10 % during winter and up to 16 % during summer. The largest values during summer are confined to the Po Valley, while the contributions in western Europe range from 12 % to 14 %. Only during summer are the ozone contributions slightly influenced by the anthropogenic emission inventory, but these differences are smaller than the range of the seasonal cycle of the contribution to land transport emissions. This cycle is caused by a complex interplay of seasonal cycles of other emissions (e.g. biogenic) and seasonal variations of the ozone regimes. In addition, our results suggest that during events with large ozone values the ozone contributions of land transport and biogenic emissions increase strongly. Here, the contribution of land transport emissions peaks up to 28 %. Hence, our model results suggest that land transport emissions are an important contributor during periods with large ozone values.


2014 ◽  
Vol 14 (2) ◽  
pp. 1287-1316 ◽  
Author(s):  
E. von Schneidemesser ◽  
M. Vieno ◽  
P. S. Monks

Abstract. Ground-level ozone is recognized to be a threat to human health (WHO, 2003), have a deleterious impact on vegetation (Fowler et al., 2009), is also an important greenhouse gas (IPCC, 2007) and key to the oxidative ability of the atmosphere (Monks et al., 2009). Owing to its harmful effect on health, much policy and mitigation effort has been put into reducing its precursors – the nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOCs). The non-linear chemistry of tropospheric ozone formation, dependent mainly on NOx and NMVOC concentrations in the atmosphere, makes controlling tropospheric ozone complex. Furthermore, the concentration of ozone at any given point is a complex superimposition of in-situ produced or destroyed ozone and transported ozone on the regional and hemispheric-scale. In order to effectively address ozone, a more detailed understanding of its origins is needed. Here we show that roughly half (5 μg m−3) of the observed increase in urban (London) ozone (10 μg m−3) in the UK from 1998 to 2008 is owing to factors of local origin, in particular, the change in NO : NO2 ratio, NMVOC : NOx balance, NMVOC speciation, and emission reductions (including NOx titration). In areas with previously higher large concentrations of nitrogen oxides, ozone that was previously suppressed by high concentrations of NO has now been "unmasked", as in London and other urban areas of the UK. The remaining half (approximately 5 μg m−3) of the observed ozone increase is attributed to non-local factors such as long-term transport of ozone, changes in background ozone, and meteorological variability. These results show that a two-pronged approach, local action and regional-to-hemispheric cooperation, is needed to reduce ozone and thereby population exposure, which is especially important for urban ozone.


2019 ◽  
Author(s):  
Mariano Mertens ◽  
Astrid Kerkweg ◽  
Volker Grewe ◽  
Patrick Jöckel ◽  
Robert Sausen

Abstract. Anthropogenic and natural emissions influence the tropospheric ozone budget, thereby affecting air-quality and climate. To study the influence of different emission sources on the ozone budget, often source apportionment studies with a tagged tracer approach are performed. Studies investigating air quality issues usually rely on regional models with a high spatial resolution, while studies focusing on climate related questions often use coarsely resolved global models. It is well known that simulated ozone concentrations depend on the resolution of the model and the resolution of the emission inventory. Whether the contributions simulated by source apportionment approaches also depend on the model resolution, however, is still unclear. Therefore, this study is a first attempt to analyse the impact of the model, the model resolution, and the emission inventory resolution on simulated ozone contributions diagnosed with a tagging method. The differences of the ozone contributions caused by these factors are compared with differences which arise due to different emission inventories. To do so we apply the MECO(n) model system which on-line couples a global chemistry-climate model with a regional chemistry-climate model equipped with a tagging scheme for source apportionment. The results of the global model (300 km resolution) are compared with the results of the regional model at 50 km (Europe) and 12 km (Germany) resolution. Averaged over Europe the simulated contributions of land transport emissions to ground-level ozone differ by 10 % at maximum. For other anthropogenic emission sources the differences are in the same order of magnitude, while the contribution of stratospheric ozone to ground level ozone differs by up to 30 % on average. This suggests that ozone contributions of anthropogenic emission sources averaged on continental scale are rather robust with respect to different models, model and emission inventory resolutions. On regional scale, however, we quantified differences of the contribution of land transport emissions to ozone of up to 20 %. Depending on the region the largest differences are either caused by inter model differences, or differences of the anthropogenic emission inventories. Clearly, the results strongly depend on the compared models and emission inventories and cannot necessarily be generalised, however we show how the inclusion of source apportionment methods can help in analysing inter-model differences.


2018 ◽  
Author(s):  
Lihua Zhou ◽  
Jing Zhang ◽  
Hui Wang ◽  
Wenhao Xue ◽  
Xiaohui Zheng ◽  
...  

Abstract. Compared with other regions, air pollution in North China is very serious, especially its levels of fine particulate matter, which are closely associated with the concentrations of polluting gases, such as nitrogen oxides, sulfur oxides, organic gases, and ozone. Fine particle pollution has been studied in-depth, but there is less known about ozone. This paper focuses on the interannual variability of tropospheric ozone in North China and identifies its influential factors. Our analysis relies on satellite observations (ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide and formaldehyde concentrations) and near-surface data (carbon monoxide, sulfur dioxide, nitrogen dioxide, fine particulate concentrations, temperature, and humidity). Studies have shown that the tropospheric ozone column in North China has been at a high level for the past 3 years, with the similar time series for temperature and formaldehyde. However, trends in ozone are opposite to those of sulfur dioxide and nitrogen dioxide over this 3-year period. This indicates that the increase in ozone in North China was mainly caused by the increase in temperature and an increase in organic gas content, rather than by nitrogen oxides. Over both temporal and spatial scales, the production rate of ozone appears to be most sensitive to temperature change, as ground observations in Beijing have suggested.


2018 ◽  
Vol 18 (8) ◽  
pp. 5567-5588 ◽  
Author(s):  
Mariano Mertens ◽  
Volker Grewe ◽  
Vanessa S. Rieger ◽  
Patrick Jöckel

Abstract. We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry–climate model including an advanced tagging method (also known as source apportionment), which considers not only the emissions of nitrogen oxides (NOx, NO, and NO2), carbon monoxide (CO), and volatile organic compounds (VOC) separately, but also their non-linear interaction in producing ozone. For summer conditions a contribution of land transport emissions to ground-level ozone of up to 18 % in North America and Southern Europe is estimated, which corresponds to 12 and 10 nmol mol−1, respectively. The simulation results indicate a contribution of shipping emissions to ground-level ozone during summer on the order of up to 30 % in the North Pacific Ocean (up to 12 nmol mol−1) and 20 % in the North Atlantic Ocean (12 nmol mol−1). With respect to the contribution to the tropospheric ozone burden, we quantified values of 8 and 6 % for land transport and shipping emissions, respectively. Overall, the emissions from land transport contribute around 20 % to the net ozone production near the source regions, while shipping emissions contribute up to 52 % to the net ozone production in the North Pacific Ocean. To put these estimates in the context of literature values, we review previous studies. Most of them used the perturbation approach, in which the results for two simulations, one with all emissions and one with changed emissions for the source of interest, are compared. For a better comparability with these studies, we also performed additional perturbation simulations, which allow for a consistent comparison of results using the perturbation and the tagging approach. The comparison shows that the results strongly depend on the chosen methodology (tagging or perturbation approach) and on the strength of the perturbation. A more in-depth analysis for the land transport emissions reveals that the two approaches give different results, particularly in regions with large emissions (up to a factor of 4 for Europe). Our estimates of the ozone radiative forcing due to land transport and shipping emissions are, based on the tagging method, 92 and 62 mW m−2, respectively. Compared to our best estimates, previously reported values using the perturbation approach are almost a factor of 2 lower, while previous estimates using NOx-only tagging are almost a factor of 2 larger. Overall our results highlight the importance of differentiating between the perturbation and the tagging approach, as they answer two different questions. In line with previous studies, we argue that only the tagging approach (or source apportionment approaches in general) can estimate the contribution of emissions, which is important to attribute emission sources to climate change and/or extreme ozone events. The perturbation approach, however, is important to investigate the effect of an emission change. To effectively assess mitigation options, both approaches should be combined. This combination allows us to track changes in the ozone production efficiency of emissions from sources which are not mitigated and shows how the ozone share caused by these unmitigated emission sources subsequently increases.


2017 ◽  
Author(s):  
Mariano Mertens ◽  
Volker Grewe ◽  
Vanessa S. Rieger ◽  
Patrick Jöckel

Abstract. We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry-climate model including an advanced tagging method, which considers not only the emissions of NOx (NO and NO2), CO or non-methane hydrocarbons (NMHC) separately but the competing effects of all relevant ozone precursors. For summer conditions a contribution of land transport emissions to ground level ozone of up to 18 % in North America and South Europe is estimated, which corresponds to 12 nmol mol−1 and 10 nmol mol−1, respectively. The simulation results indicate a contribution of shipping emissions to ground level ozone during summer in the order of up to 30 % in the Northern Pacific (up to 12 nmol mol−1) and 20 % in the Northern Atlantic (12 nmol mol−1). To put these estimates in the context of literature values, we review previous studies. Most of them used the perturbation approach, in which the results from two simulations, one with all emissions and one with changed emissions for the source of interest, are compared. The comparison shows that the results strongly depend on the chosen methodology (tagging or perturbation method) and on the strength of the perturbation. A more in-depth analysis for the land transport emissions reveals that the two approaches give different results particularly in regions with large emissions (up to a factor of four for Europe). With respect to the contribution of land transport and ship traffic emissions to the tropospheric ozone burden we quantified values of 8 % and 6 % for the land transport and shipping emissions, respectively. Overall, the emissions from land transport contribute to around 20 % of the net ozone production near the source regions, while shipping emissions contribute up to 52 % to the net ozone production in the Northern Pacific. Our estimates of the radiative ozone forcing due to emissions of land transport and shipping emissions are 92 mW m−2 and 62 mW m−2, respectively. Again these results are larger by a factor of 2–3 compared to previous studies using the perturbation approach, but largely agree with previous studies which investigated the difference between the tagging and the perturbation method. Overall our results highlight the importance of differing between the perturbation and the tagging approach, as they answer two different questions. We argue that only the tagging approach can estimate the contribution of emissions, while only the perturbation approach investigates the effect of an emission change. To effectively asses mitigation options both approaches should be combined.


2008 ◽  
Vol 8 (3) ◽  
pp. 11063-11101
Author(s):  
G. Clain ◽  
J. L. Baray ◽  
R. Delmas ◽  
R. Diab ◽  
J. Leclair de Bellevue ◽  
...  

Abstract. This paper presents a climatology and trends of tropospheric ozone in the southwestern part of Indian Ocean (Reunion Island) and South Africa (Irene and Johannesburg). This study is based on a multi-instrumental dataset: PTU-O3 radiosoundings, DIAL LIDAR, MOZAIC airborne instrumentation and Dasibi UV ground based measurements. The seasonal profiles of tropospheric ozone at Reunion Island have been calculated from two different data sets: radiosondes and LIDAR. The two climatological profiles are similar, except in austral summer when smaller values for the LIDAR profiles in the free troposphere, and in the upper troposphere for all seasons occur. These results show that the LIDAR profiles are at times not representative of the true ozone climatological value as measurements can be taken only under clear sky conditions, and the upper limit reached depends on the signal. In the lower troposphere, climatological ozone values from radiosondes have been compared to a one year campaign of ground based measurements from a Dasibi instrument located at high altitude site (2150 m) at Reunion Island. The seasonal cycle is comparable for the two datasets, with Dasibi UV values displaying slightly higher values. This suggests that if local dynamical and possibly physico-chemical effects may influence the ozone level, the seasonal cycle can be followed with ground level measurements. Average ground level concentrations measured on the summits of the island seem to be representative of the lower free troposphere ozone concentration at the same altitude (~2000 m) whereas night time data would be representative of tropospheric concentration at a higher altitude (~3000 m) due to the subsidence effect. Finally, linear trends have been calculated from radiosondes data at Reunion and Irene. Considering the whole tropospheric column, the trend is slightly positive for Reunion, and more clearly positive for Irene. Trend calculations have also been made separating the troposphere into three layers, and separating the dataset into seasons. Results shows that the positive trend for Irene is governed by the lower layer most probably by industrial pollution and biomass burning. On the contrary, for Reunion Island, the strongest trends are observed in the upper troposphere, and in winter when stratospheric-tropospheric exchange is more frequently expected.


2017 ◽  
Vol 68 (4) ◽  
pp. 824-829
Author(s):  
Cornel Ianache ◽  
Laurentiu Predescu ◽  
Mirela Predescu ◽  
Dumitru Dumitru

The serious air pollution problem has determined public concerns, worldwide. One of the main challenges for countries all over the world is caused by the elevated levels of ground-level ozone (O3) concentrations and its anthropogenic precursors. Ploiesti city, as one of the major urban area of Romania, is facing the same situation. This research aims to investigate spatial and temporal distribution characteristics of O3 in relationship with nitrogen oxides (NOx) using statistical analysis methods. Hourly O3 and NOx measurements were collected during 2014 year in Ploiesti. The results obtained showed that the ozone spatial distribution was non-normal for each month in 2014. The diurnal cycle of ground-level ozone concentrations showed a mid-day peak, while NOx diurnal variations presented 2 daily peaks, one in the morning (7:00 a.m.) and one in the afternoon (between 5:00 and 7:00 p.m.). In addition, it was observed a distinct pattern of weekly variations for O3 and NOx. Like in many other urban areas, the results indicated the presence of the �ozone weekend effect� in Ploiesti during the 2014 year, ozone concentrations being slightly higher on weekends compared to weekdays. For the same monitoring site, the nitrogen oxides were less prevalent on Saturdays and Sundays, probably due to reducing of road traffic and other pollution-generating activities on weekends than during the week.


2020 ◽  
Vol 20 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Yongjoo Choi ◽  
Yugo Kanaya ◽  
Seung-Myung Park ◽  
Atsushi Matsuki ◽  
Yasuhiro Sadanaga ◽  
...  

Abstract. The black carbon (BC) and carbon monoxide (CO) emission ratios were estimated and compiled from long-term, harmonized observations of the ΔBC∕ΔCO ratios under conditions unaffected by wet deposition at four sites in East Asia, including two sites in South Korea (Baengnyeong and Gosan) and two sites in Japan (Noto and Fukuoka). Extended spatio-temporal coverage enabled estimation of the full seasonality and elucidation of the emission ratio in North Korea for the first time. The estimated ratios were used to validate the Regional Emission inventory in ASia (REAS) version 2.1 based on six study domains (“East China”, “North China”, “Northeast China”, South Korea, North Korea, and Japan). We found that the ΔBC∕ΔCO ratios from four sites converged into a narrow range (6.2–7.9 ng m−3 ppb−1), suggesting consistency in the results from independent observations and similarity in source profiles over the regions. The BC∕CO ratios from the REAS emission inventory (7.7 ng m−3 ppb−1 for East China – 23.2 ng m−3 ppb−1 for South Korea) were overestimated by factors of 1.1 for East China to 3.0 for South Korea, whereas the ratio for North Korea (3.7 ng m−3 ppb−1 from REAS) was underestimated by a factor of 2.0, most likely due to inaccurate emissions from the road transportation sector. Seasonal variation in the BC∕CO ratio from REAS was found to be the highest in winter (China and North Korea) or summer (South Korea and Japan), whereas the measured ΔBC∕ΔCO ratio was the highest in spring in all source regions, indicating the need for further characterization of the seasonality when creating a bottom-up emission inventory. At levels of administrative districts, overestimation in Seoul, the southwestern regions of South Korea, and Northeast China was noticeable, and underestimation was mainly observed in the western regions in North Korea, including Pyongyang. These diagnoses are useful for identifying regions where revisions in the inventory are necessary, providing guidance for the refinement of BC and CO emission rate estimates over East Asia.


2015 ◽  
Vol 15 (18) ◽  
pp. 10839-10856 ◽  
Author(s):  
G. Dufour ◽  
M. Eremenko ◽  
J. Cuesta ◽  
C. Doche ◽  
G. Foret ◽  
...  

Abstract. We use satellite observations from IASI (Infrared Atmospheric Sounding Interferometer) on board the MetOp-A satellite to evaluate the springtime daily variations in lower-tropospheric ozone over east Asia. The availability of semi-independent columns of ozone from the surface up to 12 km simultaneously with CO columns provides a powerful observational data set to diagnose the processes controlling tropospheric ozone enhancement on synoptic scales. By combining IASI observations with meteorological reanalyses from ERA-Interim, we develop an analysis method based only on IASI ozone and CO observations to identify the respective roles of the stratospheric source and the photochemical source in ozone distribution and variations over east Asia. The succession of low- and high-pressure systems drives the day-to-day variations in lower-tropospheric ozone. A case study analysis of one frontal system and one cut-off low system in May 2008 shows that reversible subsiding and ascending ozone transfers in the upper-troposphere–lower-stratosphere (UTLS) region, due to the tropopause perturbations occurring in the vicinity of low-pressure systems, impact free and lower-tropospheric ozone over large regions, especially north of 40° N, and largely explain the ozone enhancement observed with IASI for these latitudes. Irreversible stratosphere–troposphere exchanges of ozone-rich air masses occur more locally in the southern and southeastern flanks of the trough. The contribution to the lower-tropospheric ozone column is difficult to dissociate from the tropopause perturbations generated by weather systems. For regions south of 40° N, a significant correlation has been found between lower-tropospheric ozone and carbon monoxide (CO) observations from IASI, especially over the North China Plain (NCP). Considering carbon monoxide observations as a pollutant tracer, the O3–CO correlation indicates that the photochemical production of ozone from primary pollutants emitted over such large polluted regions significantly contributes to the ozone enhancements observed in the lower troposphere via IASI. When low-pressure systems circulate over the NCP, stratospheric and pollution sources play a concomitant role in the ozone enhancement. IASI's 3-D observational capability allows the areas in which each source dominates to be determined. Moreover, the studied cut-off low system has enough potential convective capacity to uplift pollutants (ozone and CO) and to transport them to Japan. The increase in the enhancement ratio of ozone to CO from 0.16 on 12 May over the North China Plain to 0.28 over the Sea of Japan on 14 May indicates photochemical processing during the plume transport.


Sign in / Sign up

Export Citation Format

Share Document