scholarly journals On the spatial variability of the regional aerosol distribution as determined from ceilometers

2020 ◽  
Author(s):  
Matthias Wiegner ◽  
Alexander Geiß ◽  
Ina Mattis ◽  
Fred Meier ◽  
Thomas Ruhtz

Abstract. Measurements of the vertical distribution of aerosol particles are typically only available at selected sites leaving the question of their representativeness for urban and regional scales unanswered. As a contribution to solve this problem we have investigated ceilometer signals from two testbeds in Munich and Berlin, Germany. For each testbed measurements of 24 months from 6 ceilometers were available. This constitutes a unique data set, in particular as the same type of instruments are deployed and the same data evaluation schemes applied. Two parameters are discussed: the mixing layer height (MLH) as an indicator for the vertical distribution and the integrated backscatter as a proxy for the amount of aerosols in the mixing layer. The MLH was determined by the COBOLT algorithm, the integrated backscatter from the Klett (backward and forward) inversion scheme. It was found that the mean difference of the MLH at two sites within a testbed typically only varies by less than 50 m, slightly increasing with the distance of the corresponding sites. Almost 60 % of all intercomparisons agree within ±100 m. MLHs are typically correlated with R > 0.9 in particular for the Berlin-testbed. With respect to the integrated backscatter the correlation is in the range of 0.7 < R < 0.9. This is expected from the diversity of local aerosol sources within a given testbed. We conclude from our data that the MLH determined from a single ceilometer is applicable for a whole metropolitan area. However, the integrated backscatter of particles within the mixing layer exhibits a variability of 15–25 % suggesting that one ceilometer is not representative, especially if atmospheric processes shall be investigated.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katie E. Miles ◽  
Bryn Hubbard ◽  
Evan S. Miles ◽  
Duncan J. Quincey ◽  
Ann V. Rowan ◽  
...  

AbstractSurface melting of High Mountain Asian debris-covered glaciers shapes the seasonal water supply to millions of people. This melt is strongly influenced by the spatially variable thickness of the supraglacial debris layer, which is itself partially controlled by englacial debris concentration and melt-out. Here, we present measurements of deep englacial debris concentrations from debris-covered Khumbu Glacier, Nepal, based on four borehole optical televiewer logs, each up to 150 m long. The mean borehole englacial debris content is ≤ 0.7% by volume in the glacier’s mid-to-upper ablation area, and increases to 6.4% by volume near the terminus. These concentrations are higher than those reported for other valley glaciers, although those measurements relate to discrete samples while our approach yields a continuous depth profile. The vertical distribution of englacial debris increases with depth, but is also highly variable, which will complicate predictions of future rates of surface melt and debris exhumation at such glaciers.


2019 ◽  
Vol 19 (9) ◽  
pp. 5771-5790 ◽  
Author(s):  
Eoghan Darbyshire ◽  
William T. Morgan ◽  
James D. Allan ◽  
Dantong Liu ◽  
Michael J. Flynn ◽  
...  

Abstract. We examine processes driving the vertical distribution of biomass burning pollution following an integrated analysis of over 200 pollutant and meteorological profiles measured in situ during the South AMerican Biomass Burning Analysis (SAMBBA) field experiment. This study will aid future work examining the impact of biomass burning on weather, climate and air quality. During the dry season there were significant contrasts in the composition and vertical distribution of haze between western and eastern regions of tropical South America. Owing to an active or residual convective mixing layer, the aerosol abundance was similar from the surface to ∼1.5 km in the west and ∼3 km in the east. Black carbon mass loadings were double as much in the east (1.7 µg m−3) than the west (0.85 µg m−3), but aerosol scattering coefficients at 550 nm were similar (∼120 Mm−1), as too were CO near-surface concentrations (310–340 ppb). We attribute these contrasts to the more flaming combustion of Cerrado fires in the east and more smouldering combustion of deforestation and pasture fires in the west. Horizontal wind shear was important in inhibiting mixed layer growth and plume rise, in addition to advecting pollutants from the Cerrado regions into the remote tropical forest of central Amazonia. Thin layers above the mixing layer indicate the roles of both plume injection and shallow moist convection in delivering pollution to the lower free troposphere. However, detrainment of large smoke plumes into the upper free troposphere was very infrequently observed. Our results reiterate that thermodynamics control the pollutant vertical distribution and thus point to the need for correct model representation so that the spatial distribution and vertical structure of biomass burning smoke is captured. We observed an increase of aerosol abundance relative to CO with altitude both in the background haze and plume enhancement ratios. It is unlikely associated with thermodynamic partitioning, aerosol deposition or local non-fire sources. We speculate it may be linked to long-range transport from West Africa or fire combustion efficiency coupled to plume injection height. Further enquiry is required to explain the phenomenon and explore impacts on regional climate and air quality.


2018 ◽  
Vol 35 (3) ◽  
pp. 473-490 ◽  
Author(s):  
Timothy A. Bonin ◽  
Brian J. Carroll ◽  
R. Michael Hardesty ◽  
W. Alan Brewer ◽  
Kristian Hajny ◽  
...  

AbstractA Halo Photonics Stream Line XR Doppler lidar has been deployed for the Indianapolis Flux Experiment (INFLUX) to measure profiles of the mean horizontal wind and the mixing layer height for quantification of greenhouse gas emissions from the urban area. To measure the mixing layer height continuously and autonomously, a novel composite fuzzy logic approach has been developed that combines information from various scan types, including conical and vertical-slice scans and zenith stares, to determine a unified measurement of the mixing height and its uncertainty. The composite approach uses the strengths of each measurement strategy to overcome the limitations of others so that a complete representation of turbulent mixing is made in the lowest km, depending on clouds and aerosol distribution. Additionally, submeso nonturbulent motions are identified from zenith stares and removed from the analysis, as these motions can lead to an overestimate of the mixing height. The mixing height is compared with in situ profile measurements from a research aircraft for validation. To demonstrate the utility of the measurements, statistics of the mixing height and its diurnal and annual variability for 2016 are also presented. The annual cycle is clearly captured, with the largest and smallest afternoon mixing heights observed at the summer and winter solstices, respectively. The diurnal cycle of the mixing layer is affected by the mean wind, growing slower in the morning and decaying more rapidly in the evening with lighter winds.


Author(s):  
Lianji Jin ◽  
Liang Lin ◽  
Deping Ding ◽  
Delong Zhao ◽  
Bin Zhu ◽  
...  

Studies on the detection of layers with elevated black carbon aerosol (BC) concentrations and the formation conditions of these layers help understand the vertical distribution of BC concentrations, which will provide a basis for the assessment of climate effects and early BC pollution warnings. By using the Weather Research and Forecasting with Chemistry (WRF-Chem) numerical model, we performed a numerical simulation analysis on the authenticity of strong elevated BC concentration layers that were detected by an aircraft in the mixing layer over Harbin, China, which is a high-emission area, on a clear sunny afternoon in the early heating period of 2016. We then discuss possible problems and solutions when non-vertical paths are used to detect the vertical distribution of BC concentrations. Finally, we discuss the favorable conditions for the formation of elevated BC concentration layers by weak vertical flow. The results show that the horizontal variability of BC concentration in the mixing layer in the observation area in Harbin was sufficiently large during the measurement. This produced a false elevated layer, as detected by the aircraft during one round of spiral flight in the mixing layer. The root mean square of the horizontal distribution of BC concentration did not change with height in the mixing layer during the daytime, but it decreased with the thickness of the mixing layer and was higher in the mixing layer than in the free atmosphere. Therefore, the thinner the mixing layer, in which the vertical distribution of the BC concentration is detected in an inclined path, the stronger interference of the horizontal variability on the detected results. When a spiral flight detection path is used, the aircraft should fly at least two rounds in the mixing layer. In the daytime, due to strong turbulence in the mixing layer, weak vertical uplift is not favorable for the occurrence of elevated BC concentration layers in the mixing layer. In the nighttime, if weak vertical uplift is well matched with the BC concentration or its vertical gradient, elevated BC concentration layers can be formed in the atmosphere. Compared with upper layers far from the ground, nighttime elevated layers are easier to form in lower layers near the ground because high BC concentrations or large vertical gradients are more likely to occur in the lower layers. Both cases facilitate the occurrence of large vertical upward transport rates of BC.


2021 ◽  
Vol 21 (1) ◽  
pp. 577-595
Author(s):  
Lena Frey ◽  
Frida A.-M. Bender ◽  
Gunilla Svensson

Abstract. The vertical distribution of aerosols plays an important role in determining the effective radiative forcing from aerosol–radiation and aerosol–cloud interactions. Here, a number of processes controlling the vertical distribution of aerosol in five subtropical marine stratocumulus regions in the climate model NorESM1-M are investigated, with a focus on the total aerosol extinction. A comparison with satellite lidar data (CALIOP, Cloud–Aerosol Lidar with Orthogonal Polarization) shows that the model underestimates aerosol extinction throughout the troposphere, especially elevated aerosol layers in the two regions where they are seen in observations. It is found that the shape of the vertical aerosol distribution is largely determined by the aerosol emission and removal processes in the model, primarily through the injection height, emitted particle size, and wet scavenging. In addition, the representation of vertical transport related to shallow convection and entrainment is found to be important, whereas alterations in aerosol optical properties and cloud microphysics parameterizations have smaller effects on the vertical aerosol extinction distribution. However, none of the alterations made are sufficient for reproducing the observed vertical distribution of aerosol extinction, neither in magnitude nor in shape. Interpolating the vertical levels of CALIOP to the corresponding model levels leads to better agreement in the boundary layer and highlights the importance of the vertical resolution.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 481
Author(s):  
Lianji Jin ◽  
Liang Lin ◽  
Deping Ding ◽  
Delong Zhao ◽  
Bin Zhu ◽  
...  

Studies on the detection of layers with elevated black carbon aerosol (BC) concentrations and the formation conditions of these layers help understand the vertical distribution of BC concentrations, which will provide a basis for the assessment of climate effects and early pollution warnings. By using the Weather Research and Forecasting with Chemistry (WRF-Chem) numerical model, we performed a numerical simulation analysis on the authenticity of strongly elevated BC concentration layers that were detected by an aircraft in the mixing layer over Harbin, China, which is a high-emission area, on a clear sunny afternoon in the early heating period of 2016. We then discuss possible problems and solutions when non-vertical paths are used to detect the vertical distribution of BC concentrations. Finally, we discuss the favorable conditions for the formation of elevated BC concentration layers by a weak vertical flow based on the simulation. The modeling results show that the horizontal variability of BC concentration in the mixing layer in the observation area in Harbin was sufficiently large during the measurement. This produced a false elevated layer, as detected by the aircraft during one round of spiral flight in the mixing layer. The root mean square of the horizontal distribution of BC concentration did not change with height in the mixing layer during the daytime, but it decreased with the thickness of the mixing layer and was higher in the mixing layer than in the free atmosphere. Therefore, the thinner the mixing layer, in which the vertical distribution of the BC concentration is detected in an inclined path, the stronger interference of the horizontal variability on the detected results. In the daytime, due to strong turbulence in the mixing layer, weak vertical uplift is not favorable for the occurrence of elevated BC concentration layers in the mixing layer. In the nighttime, if weak vertical uplift is well-matched with the BC concentration or its vertical gradient, elevated BC concentration layers can be formed in the atmosphere. Compared with upper layers far from the ground, nighttime elevated layers are easier to form in lower layers near the ground because high BC concentrations or large vertical gradients are more likely to occur in the lower layers. Both cases facilitate the occurrence of large vertical upward transport rates of BC.


Methods have been developed for the examination of the horizontal and vertical movements of short-period disturbances in the ionosphere. It has been found that quasi-periodic travelling disturbances with periods of from 10 to 60 min. are of frequent occurrence in the F region by day. They appear as temporary variations in the vertical distribution of ionization which show a horizontal progression and a vertical progression downwards. The horizontal directions of travel have a well-defined mean direction on most days. The mean direction shows a marked seasonal variation with a sudden change at each equinox. The horizontal rate of travel is usually between 5 and 10 km./min., and the rate of vertical progression downwards is approximately half the horizontal rate. The disturbances are considered to be variations of a compressional type in the atmosphere resulting in changes in the distribution of ionization.


2018 ◽  
Vol 18 (7) ◽  
pp. 4897-4910 ◽  
Author(s):  
Xiaowan Zhu ◽  
Guiqian Tang ◽  
Jianping Guo ◽  
Bo Hu ◽  
Tao Song ◽  
...  

Abstract. To investigate the spatiotemporal variability of the mixing layer height (MLH) on the North China Plain (NCP), multi-site and long-term observations of the MLH with ceilometers at three inland stations (Beijing, BJ; Shijiazhuang, SJZ; Tianjin, TJ) and one coastal site (Qinhuangdao) were conducted from 16 October 2013 to 15 July 2015. The MLH of the inland stations in the NCP were highest in summer and lowest in winter, while the MLH on the coastal area of Bohai was lowest in summer and highest in spring. As a typical site in southern Hebei, the annual mean of the MLH at SJZ was 464 ± 183 m, which was 15.0 and 21.9 % lower than that at the BJ (594 ± 183 m) and TJ (546 ± 197 m) stations, respectively. Investigation of the shear term and buoyancy term in the NCP revealed that these two parameters in southern Hebei were 2.8 times lower and 1.5 times higher than that in northern NCP within 0–1200 m in winter, respectively, leading to a 1.9-fold higher frequency of the gradient Richardson number > 1 in southern Hebei compared to the northern NCP. Furthermore, combined with aerosol optical depth and PM2.5 observations, we found that the pollutant column concentration contrast (1.2 times) between these two areas was far less than the near-ground PM2.5 concentration contrast (1.5 times). Through analysis of the ventilation coefficient in the NCP, the near-ground heavy pollution in southern Hebei mainly resulted from the lower MLH and wind speed. Therefore, due to the importance of unfavorable weather conditions, heavily polluting enterprises should be relocated and strong emission reduction measures should be introduced to improve the air quality in southern Hebei.


2013 ◽  
Vol 6 (11) ◽  
pp. 2941-2951 ◽  
Author(s):  
D. Cimini ◽  
F. De Angelis ◽  
J.-C. Dupont ◽  
S. Pal ◽  
M. Haeffelin

Abstract. The mixing layer height (MLH) is a key parameter for boundary layer studies, including meteorology, air quality, and climate. MLH estimates are inferred from in situ radiosonde measurements or remote sensing observations from instruments like lidar, wind profiling radar, or sodar. Methods used to estimate MLH from radiosonde profiles are also used with atmospheric temperature and humidity profiles retrieved by microwave radiometers (MWR). This paper proposes an alternative approach to estimate MLH from MWR data, based on direct observations (brightness temperatures, Tb) instead of retrieved profiles. To our knowledge, MLH estimates directly from Tb observations have never been attempted before. The method consists of a multivariate linear regression trained with an a priori set of collocated MWR Tb observations (multifrequency and multi-angle) and MLH estimates from a state-of-the-art lidar system. The proposed method was applied to a 7-month data set collected at a typical midlatitude site. Results show that the method is able to follow both the diurnal cycle and the day-to-day variability as suggested by the lidar measurements, and also it can detect low MLH values that are below the full overlap limit (~200 m) of the lidar system used. Statistics of the comparison between MWR- and reference lidar-based MLH retrievals show mean difference within 10 m, root mean square within 340 m, and correlation coefficient higher than 0.77. Monthly mean analysis for daytime MLH from MWR, lidar, and radiosonde shows consistent seasonal variability, peaking at ~1200–1400 m in June and decreasing down to ~600 m in October. Conversely, nighttime monthly mean MLH from all methods are within 300–500 m without any significant seasonal variability. The proposed method provides results that are more consistent with radiosonde estimates than MLH estimates from MWR-retrieved profiles. MLH monthly mean values agree well within 1 standard deviation with the bulk Richardson number method applied at radiosonde profiles at 11:00 and 23:00 UTC. The method described herewith operates continuously and is expected to work with analogous performances for the entire diurnal cycle, except during considerable precipitation, demonstrating new potential for atmospheric observation by ground-based microwave radiometry.


Sign in / Sign up

Export Citation Format

Share Document