scholarly journals A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology

2021 ◽  
Vol 21 (22) ◽  
pp. 16689-16707
Author(s):  
Ju-Mee Ryoo ◽  
Leonhard Pfister ◽  
Rei Ueyama ◽  
Paquita Zuidema ◽  
Robert Wood ◽  
...  

Abstract. In 2016–2018, the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project undertook 3-month-long deployments to the southeastern (SE) Atlantic Ocean using research aircraft to better understand the impact of biomass burning (BB) aerosol transport to the SE Atlantic Ocean on climate. In this (part 1 of the meteorological overview) paper, the climatological features at monthly timescales are investigated. The southern African easterly jet (AEJ-S), defined as the zonal easterlies over 600–700 hPa exceeding 6 m s−1 around 5–15∘ S, is a characteristic feature of the mid-level circulation over southern Africa that was also during the deployment months of August 2017, September 2016, and October 2018. Climatologically, the AEJ-S develops at lower altitudes (∼ 3 km; 700 hPa) between 5–10∘ S in August, while it develops at around 4 km (∼ 600 hPa) and further south (5–15∘ S) in September and October, largely driven by the strong sensible heating over the African plateau. Notable meteorological anomalous characteristics during the 3 deployment months, compared to climatology (2000–2018), include the following: (1) during August 2017, the AEJ-S was weaker than the climatological mean, with an additional anomalous upper-level jet aloft (∼ 6 km) around 10∘ S. August 2017 was also drier over the SE Atlantic at 600–700 hPa than climatology, with a stronger Benguela low-level jet (LLJ) at 925–950 hPa along the Namibian coast of the SE Atlantic. Consistent with this, the southern Atlantic anticyclone was also stronger and closer to the coast than the August climatological mean. (2) During September 2016, the AEJ-S intensity was similar to the climatological mean, although the heat low and vertical motion over the land was slightly stronger compared to the September climatology. The LLJ and the large-scale southern Atlantic anticyclone were stronger than the climatological mean. (3) During October 2018, the AEJ-S was slightly weaker compared to the climatological mean, as was the LLJ and the southern Atlantic anticyclone. October 2018 was wetter over the Benguela coastal region at 600 hPa than the climatological mean. During all the deployment months, the sea surface temperatures (SST) over the SE Atlantic were warmer than the climatological means, but the monthly mean low cloud fraction was only noticeably reduced in August 2017. A weak August 2017 AEJ-S can explain low offshore black carbon (BC) mixing ratios within the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, although the BC peak altitude, at 2–3 km, is below that of the AEJ-S. The upper-level wave disturbance and the associated anomalous circulation also explain the weakening of AEJ-S through the reduction of the strength of the heat low over the land during August 2017.

2006 ◽  
Vol 134 (11) ◽  
pp. 3479-3505 ◽  
Author(s):  
M. Notaro ◽  
W-C. Wang ◽  
W. Gong

Abstract The relationship between the large-scale circulation and regional climate of the northeast United States is investigated for early winter using observational data and the State University of New York at Albany regional climate model. Simulated patterns of temperature, precipitation, and atmospheric circulation compare well with observations, despite a cold, dry bias. Ten December runs are analyzed to investigate the impact of the Pacific–North American (PNA) pattern on temperature, precipitation, clouds, and circulation features. During a positive PNA pattern, the simulated and observed eastern U.S. jet shifts to the southeast, coinciding with cold, dry conditions in the Northeast. This shift and intensification of the upper-level jet stream during a positive PNA pattern coincides with a greater frequency of cyclones and anticyclones along a distinct southwest–northeast track. Despite increased cyclone activity, total wintertime precipitation is below normal during a positive PNA pattern because of enhanced stability and subsidence over land, along with lower-atmospheric moisture content. Lower surface air temperatures during a positive PNA pattern result in enhanced simulated cloud cover over the Great Lakes and Atlantic Ocean due to increased thermal contrast and fluxes of sensible and latent heat, and a reduction in clouds over land. Interactions between the PNA and North Atlantic Oscillation (NAO) patterns impact the Northeast winter climate. Observed frontal passages through New York are most abundant during a negative PNA and positive NAO pattern, with a zonal upper-level jet positioned over New York. A positive PNA pattern is frequently characterized by an earlier observed Great Lakes ice season, while the greatest lake-effect snowfall occurs during a positive PNA and negative NAO pattern. The NAO pattern has the largest impact on northeast U.S. temperatures and the eastern U.S. upper-level jet during a positive PNA pattern.


2010 ◽  
Vol 25 (4) ◽  
pp. 1124-1141 ◽  
Author(s):  
Xiaohui Shi ◽  
Xiangde Xu ◽  
Chungu Lu

Abstract In the winter of 2008, China experienced once-in-50-yr (or once in 100 yr for some regions) snow and ice storms. These storms brought huge socio economical impacts upon the Chinese people and government. Although the storms had been predicted, their severity and persistence were largely underestimated. In this study, these cases were revisited and comprehensive analyses of the storms’ dynamic and thermodynamic structures were conducted. These snowstorms were also compared with U.S. east coast snowstorms. The results from this study will provide insights on how to improve forecasts for these kinds of snowstorms. The analyses demonstrated that the storms exhibited classic patterns of large-scale circulation common to these types of snowstorms. However, several physical processes were found to be unique and thought to have played crucial roles in intensifying and prolonging China’s great snowstorms of 2008. These include a subtropical high over the western Pacific, an upper-level jet stream, and temperature and moisture inversions. The combined effects of these dynamic and thermodynamic structures are responsible for the development of the storms into one of the most disastrous events in Chinese history.


2006 ◽  
Vol 24 (8) ◽  
pp. 2075-2089 ◽  
Author(s):  
A. Chakraborty ◽  
R. S. Nanjundiah ◽  
J. Srinivasan

Abstract. A theory is proposed to determine the onset of the Indian Summer Monsoon (ISM) in an Atmospheric General Circulation Model (AGCM). The onset of ISM is delayed substantially in the absence of global orography. The impact of orography over different parts of the Earth on the onset of ISM has also been investigated using five additional perturbed simulations. The large difference in the date of onset of ISM in these simulations has been explained by a new theory based on the Surface Moist Static Energy (SMSE) and vertical velocity at the mid-troposphere. It is found that onset occurs only after SMSE crosses a threshold value and the large-scale vertical motion in the middle troposphere becomes upward. This study shows that both dynamics and thermodynamics play profound roles in the onset of the monsoon.


2017 ◽  
Vol 30 (14) ◽  
pp. 5597-5603 ◽  
Author(s):  
Xian Chen ◽  
Zhong Zhong ◽  
Wei Lu

The NCEP–NCAR reanalysis dataset and the tropical cyclone (TC) best-track dataset from the Regional Specialized Meteorological Center (RSMC) Tokyo Typhoon Center were employed in the present study to investigate the possible linkage of the meridional displacement of the East Asian subtropical upper-level jet (EASJ) with the TC activity over the western North Pacific (WNP). Results indicate that summertime frequent TC activities would create the poleward shift of the EASJ through a stimulated Pacific–Japan (PJ) teleconnection pattern as well as the changed large-scale meridional temperature gradient. On the contrary, in the inactive TC years, the EASJ is often located more southward than normal with an enhanced intensity. Therefore, TC activities over the WNP are closely related to the location and intensity of the EASJ in summer at the interannual time scale.


2019 ◽  
Vol 19 (21) ◽  
pp. 13681-13699 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015–2016 was characterized by exceptionally low stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC–GW-LCYCLE II–SALSA) campaign from December 2015 to March 2016 allow the investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. Two-dimensional vertical cross sections of nitric acid (HNO3) along the flight track and tracer–tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 13 km in January and nitrified filaments persisting until the middle of March. Narrow coherent structures tilted with altitude of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, extensive nitrification of the LMS between 5.0 and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of HNO3 maxima derived from the GLORIA observations as well as the overall nitrification of the LMS. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on nitric acid trihydrate (NAT)), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) slightly improved the agreement with the GLORIA observations of individual flights. However, no parameter could be isolated which resulted in a general improvement for all flights. Still, the sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important for the simulated HNO3 distributions towards the end of the winter.


2019 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC/GW-LCYLCE II/SALSA) campaign from December 2015 to March 2016 allow an investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. For the first time vertical cross-sections of nitric acid (HNO3) along the flight track and tracer-tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with strongly enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 11 km in January and nitrified filaments persisting until the middle of March. Narrow streaks of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, a nitrification of the LMS between 5.0 ppbv and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. This extent of nitrification has never been observed before in the Arctic lowermost stratosphere. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of maximum HNO3 mixing ratios derived from the GLORIA observations as well as the enhancement at lower altitudes. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on NAT), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) mostly improve the agreement with the GLORIA observations. The sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important towards the end of the winter.


2017 ◽  
Vol 32 (3) ◽  
pp. 1041-1056 ◽  
Author(s):  
Roderick van der Linden ◽  
Andreas H. Fink ◽  
Joaquim G. Pinto ◽  
Tan Phan-Van

Abstract A record-breaking rainfall event occurred in northeastern Vietnam in late July–early August 2015. The coastal region in Quang Ninh Province was hit severely, with station rainfall sums in the range of 1000–1500 mm. The heavy rainfall led to flooding and landslides, which resulted in an estimated economic loss of $108 million (U.S. dollars) and 32 fatalities. Using a multitude of data sources and ECMWF ensemble forecasts, the synoptic–dynamic development and practical predictability of the event is investigated in detail for the 4-day period from 1200 UTC 25 July to 1200 UTC 29 July 2015, during which the major portion of the rainfall was observed. A slowly moving upper-level subtropical trough and the associated surface low in the northern Gulf of Tonkin promoted sustained moisture convergence and convection over northeastern Vietnam. The humidity was advected in a moisture transport band lying across the Indochina Peninsula and emanating from a tropical storm over the Bay of Bengal. Analyses of the ECMWF ensemble forecasts clearly showed a sudden emergence of the predictability of the extreme event at lead times of 3 days that was associated with the correct forecasts of the intensity and location of the subtropical trough in the 51 ensemble members. Thus, the Quang Ninh event is a good example in which the predictability of tropical convection arises from large-scale synoptic forcing; in the present case it was due to a tropical–extratropical interaction that has not been documented before for the region and season.


2020 ◽  
Author(s):  
Evangelia Louropoulou ◽  
Martha Gledhill ◽  
Eric P. Achterberg ◽  
Thomas J. Browning ◽  
David J. Honey ◽  
...  

<p>Heme <em>b</em> is an iron-containing cofactor in hemoproteins that participates in the fundamental processes of photosynthesis and respiration in phytoplankton. Heme <em>b</em> concentrations typically decline in waters with low iron concentrations but due to lack of field data, the distribution of heme <em>b</em> in particulate material in the ocean is poorly constrained. Within the framework of the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the GEOTRACES programme, the authors compiled datasets and conducted multidisciplinary research (e.g. chemical oceanography, microbiology, biogeochemical modelling) in order to test heme <em>b</em> as an indicator of <em>in situ</em> iron-limited phytoplankton. This study was initiated in the North Atlantic Ocean and expanded to the under-sampled South Atlantic Ocean for comparison of the results considering the different phytoplankton populations. Here, we report particulate heme <em>b</em> distributions across the Atlantic Ocean (59.9°N to 34.6°S). Heme <em>b</em> concentrations in surface waters ranged from 0.10 to 33.7 pmol L<sup>-1</sup> (median=1.47 pmol L<sup>-1</sup>, n=974) and were highest in regions with a high biomass. The ratio of heme <em>b</em> to particulate organic carbon (POC) exhibited a mean value of 0.44 μmol heme<em> b</em> mol<sup>-1 </sup>POC. We identified the ratio of 0.10 µmol heme <em>b</em> mol<sup>-1</sup> POC as the cut-off between heme <em>b</em> replete and heme <em>b</em> deficient phytoplankton. By this definition, the ratio heme <em>b</em> relative to POC was consistently below 0.10 μmol mol<sup>-1</sup> in areas characterized by low Fe supply; these were the Subtropical South Atlantic gyre and the seasonally iron limited Irminger Basin. Thus, the ratio heme <em>b</em> relative to POC gave a reliable indication of iron limited phytoplankton communities in situ. Furthermore, the comparison of observed and modelled heme <em>b</em> suggested that heme <em>b</em> could account for between 0.17-9.1% of biogenic iron. This range was comparable to previous culturing observations for species with low heme <em>b</em> content and species growing in low Fe (≤0.50 nmol L<sup>-1</sup>) or nitrate culturing media. Our large scale observations of heme<em> b</em> relative to organic matter suggest the impact of changes in iron supply on phytoplankton iron status.</p>


2008 ◽  
Vol 136 (5) ◽  
pp. 1582-1592 ◽  
Author(s):  
John W. Nielsen-Gammon ◽  
David A. Gold

Abstract Idealized numerical experiments are conducted to understand the effect of upper-tropospheric potential vorticity (PV) anomalies on an environment conducive to severe weather. Anomalies are specified as a single isolated vortex, a string of vortices analogous to a negatively tilted trough, and a pair of string vortices analogous to a position error in a negatively tilted trough. The anomalies are placed adjacent to the tropopause along a strong upper-level jet at a time just prior to a major tornado outbreak and inverted using the nonlinear balance equations. In addition to the expected destabilization beneath and adjacent to a cyclonic PV anomaly, the spatial pattern of the inverted balanced streamfunction and height fields is distorted by the presence of the horizontal PV gradient along the upper-tropospheric jet stream. Streamfunction anomalies are elongated in the cross-jet direction, while height and temperature anomalies are elongated in the along-jet direction. The amplitude of the inverted fields, as well as the changes in CAPE associated with the inverted temperature perturbations, are linearly proportional to the amplitudes of the PV anomalies themselves, and the responses to complex PV perturbation structures are approximated by the sum of the responses to individual simple PV anomalies. This is true for the range of PV amplitudes tested, which was designed to mimic typical 6-h forecast or analysis errors and produced changes in CAPE beneath the trough of well over 100 J kg−1. Impacts on inverted fields are largest when the PV anomaly is on the anticyclonic shear side of the jet, where background PV is small, compared with the cyclonic shear side of the jet, where background PV is large.


2017 ◽  
Vol 145 (10) ◽  
pp. 4055-4079 ◽  
Author(s):  
Sam Hardy ◽  
David M. Schultz ◽  
Geraint Vaughan

Major river flooding affected the United Kingdom in late September 2012 as a slow-moving extratropical cyclone brought over 150 mm of rain to parts of northern England and north Wales. The cyclone deepened over the United Kingdom on 24–26 September as a potential vorticity (PV) anomaly approached from the northwest, elongated into a PV streamer, and wrapped around the cyclone. The strength and position of the PV anomaly is modified in the initial conditions of Weather Research and Forecasting Model simulations, using PV surgery, to examine whether different upper-level forcing, or different phasing between the PV anomaly and cyclone, could have produced an even more extreme event. These simulations reveal that quasigeostrophic (QG) forcing for ascent ahead of the anomaly contributed to the persistence of the rainfall over the United Kingdom. Moreover, weakening the anomaly resulted in lower rainfall accumulations across the United Kingdom, suggesting that the impact of the event might be proportional to the strength of the upper-level QG forcing. However, when the anomaly was strengthened, it rotated cyclonically around a large-scale trough over Iceland rather than moving eastward as in the verifying analysis, with strongly reduced accumulated rainfall across the United Kingdom. A similar evolution developed when the anomaly was moved farther away from the cyclone. Conversely, moving the anomaly nearer to the cyclone produced a similar solution to the verifying analysis, with slightly increased rainfall totals. These counterintuitive results suggest that the verifying analysis represented almost the highest-impact scenario possible for this flooding event when accounting for sensitivity to the initial position and strength of the PV anomaly.


Sign in / Sign up

Export Citation Format

Share Document