scholarly journals The influence of nitric acid on the cloud processing of aerosol particles

2006 ◽  
Vol 6 (6) ◽  
pp. 1627-1634 ◽  
Author(s):  
S. Romakkaniemi ◽  
H. Kokkola ◽  
K. E. J. Lehtinen ◽  
A. Laaksonen

Abstract. In this paper we present simulations of the effect of nitric acid (HNO3) on cloud processing of aerosol particles. Sulfuric acid (H2SO4) production and incloud coagulation are both affected by condensed nitric acid as nitric acid increases the number of cloud droplets, which will lead to smaller mean size and higher total surface area of droplets. As a result of increased cloud droplet number concentration (CDNC), the incloud coagulation rate is enhanced by a factor of 1–1.3, so that the number of interstitial particles reduces faster. In addition, sulfuric acid production occurs in smaller particles and so the cloud processed aerosol size distribution is dependent on the HNO3 concentration. This affects both radiative properties of aerosol particles and the formation of cloud droplets during a sequence of cloud formation-evaporation events. It is shown that although the condensation of HNO3 increases the number of cloud droplets during the single updraft, it is possible that presence of HNO3 can actually decrease the cloud droplet number concentration after several cloud cycles when also H2SO4 production is taken into account.

2005 ◽  
Vol 5 (5) ◽  
pp. 10197-10216 ◽  
Author(s):  
S. Romakkaniemi ◽  
H. Kokkola ◽  
K. E. J. Lehtinen ◽  
A. Laaksonen

Abstract. In this paper we present simulations of the effect of nitric acid (HNO3) on cloud processing of aerosol particles. Sulfuric acid (H2SO4) production and incloud coagulation are both affected by condensed nitric acid as nitric acid increases the number of cloud droplets, which will lead to smaller mean size and higher total surface area of droplets. Increased acidity due to HNO3 affects the H2SO4 production. As a result of increased cloud droplet number concentration (CDNC), the incloud coagulation rate is enhanced, so that the number of interstitial particles reduces faster. In addition, sulfuric acid production occurs in smaller particles and this will lead to higher number of particles in the accumulation mode.


2019 ◽  
Vol 5 (5) ◽  
pp. eaav7689 ◽  
Author(s):  
Suzanne E. Paulson ◽  
Peter J. Gallimore ◽  
Xiaobi M. Kuang ◽  
Jie Rou Chen ◽  
Markus Kalberer ◽  
...  

Aerosol particles and their interactions with clouds are one of the most uncertain aspects of the climate system. Aerosol processing by clouds contributes to this uncertainty, altering size distributions, chemical composition, and radiative properties. Many changes are limited by the availability of hydroxyl radicals in the droplets. We suggest an unrecognized potentially substantial source of OH formation in cloud droplets. During the first few minutes following cloud droplet formation, the material in aerosols produces a near-UV light–dependent burst of hydroxyl radicals, resulting in concentrations of 0.1 to 3.5 micromolar aqueous OH ([OH]aq). The source of this burst is previously unrecognized chemistry between iron(II) and peracids. The contribution of the “OH burst” to total OH in droplets varies widely, but it ranges up to a factor of 5 larger than previously known sources. Thus, this new process will substantially enhance the impact of clouds on aerosol properties.


2021 ◽  
Author(s):  
Lukas Zipfel ◽  
Hendrik Andersen ◽  
Jan Cermak

<p>Satellite observations are used in regional machine learning models to quantify sensitivities of marine boundary-layer clouds (MBLC) to aerosol changes.</p><p>MBLCs make up a large part of the global cloud coverage as they are persistently present over more than 20% of the Earth’s oceans in the annual mean.They play an important role in Earth’s energy budget by reflecting solar radiation and interacting with thermal radiation from the surface, leading to a net cooling effect. Cloud properties and their radiative characteristics such as cloud albedo, horizontal and vertical extent, lifetime and precipitation susceptibility are dependent on environmental conditions. Aerosols in their role as condensation nuclei affect these cloud radiative properties through changes in the cloud droplet number concentration and subsequent cloud adjustments to this perturbation. However, the magnitude and sign of these effects remain among the largest uncertainties in future climate predictions.</p><p>In an effort to help improve these predictions a machine learning approach in combination with observational data is pursued:</p><p>Satellite observations from the collocated A-Train dataset (C3M) for 2006-2011 are used in combination with ECMWF atmospheric reanalysis data (ERA5) to train regional Gradient Boosting Regression Tree (GBRT) models to predict changes in key physical and radiative properties of MBLCs. The cloud droplet number concentration (N<sub>d</sub>) and the liquid water path (LWP) are simulated for the eastern subtropical oceans, which are characterised by a high annual coverage of MBLC due to the occurrence of semi-permanent stratocumulus sheets. Relative humidity above cloud, cloud top height and temperature below the cloud base and at the surface are identified as important predictors for both N<sub>d</sub> and LWP.  The impact of each predictor variable on the GBRT model's output is analysed using Shapley values as a method of explainable machine learning, providing novel sensitivity estimates that will improve process understanding and help constrain the parameterization of MBLC processes in Global Climate Models.</p>


2005 ◽  
Vol 5 (9) ◽  
pp. 2561-2570 ◽  
Author(s):  
H. Korhonen ◽  
V.-M. Kerminen ◽  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. We investigate the influence of low size resolution, typical to sectional aerosol models in large scale applications, on cloud droplet activation and cloud processing of aerosol particles. A simplified cloud model with five approaches to determine the fraction of activated particles is compared with a detailed reference model under different atmospheric conditions. In general, activation approaches which assume a distribution profile within the critical model size sections predict the cloud droplet concentration most accurately under clean and moderately polluted conditions. In such cases, the deviation from the reference simulations is below 15% except for very low updraft velocities. In highly polluted cases, the concentration of cloud droplets is significantly overestimated due to the inability of the simplified model to account for the kinetic limitations of the droplet growth. Of the profiles examined, taking into account the local shape of the particle size distribution is the most accurate although in most cases the shape of the profile has little relevance. While the low resolution cloud model cannot reproduce the details of the out-of-the-cloud aerosol size distribution, it captures well the amount of sulphate produced in aqueous-phase reactions as well as the distribution of the sulphate between the cloud droplets. Overall, the simplified cloud model with low size resolution performs well for clean and moderately polluted regions that cover most of the Earth's surface and is therefore suitable for large scale models. It can, however, show uncertainties in areas with strong pollution from anthropogenic sources.


2013 ◽  
Vol 6 (3) ◽  
pp. 4207-4242
Author(s):  
T. Korhola ◽  
H. Kokkola ◽  
H. Korhonen ◽  
A.-I. Partanen ◽  
A. Laaksonen ◽  
...  

Abstract. In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.


2005 ◽  
Vol 5 (4) ◽  
pp. 4871-4892
Author(s):  
H. Korhonen ◽  
V.-M. Kerminen ◽  
K. E. J. Lehtinen ◽  
M. Kulmala

Abstract. We investigate the influence of low size resolution, typical to sectional aerosol models in large scale applications, on cloud droplet activation and cloud processing of aerosol particles. A simplified cloud scheme with five approaches to determine the fraction of activated particles is compared with a detailed reference model under different atmospheric conditions. In general, activation approaches which assume a distribution profile within the critical model size sections predict the cloud droplet concentration most accurately under clean and moderately polluted conditions. In such cases, the deviation from the reference simulations is below 15% except for very low updraft velocities. In highly polluted cases, the concentration of cloud droplets is significantly overestimated due to the inability of the simplified scheme to account for the kinetic limitations of the droplet growth. Of the profiles examined, taking into account the local shape of the particle size distribution is the most accurate although in most cases the shape of the profile has little relevance. While the low resolution cloud model cannot reproduce the details of the out-of-the-cloud aerosol size distribution, it captures well the amount of sulphate produced in aqueous-phase reactions as well as the distribution of the sulphate between the cloud droplets. Overall, the simplified cloud scheme with low size resolution performs well for clean and moderately polluted regions that cover most of the Earth's surface and is therefore suitable for large scale models.


2005 ◽  
Vol 5 (8) ◽  
pp. 2227-2252 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm) vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm


2016 ◽  
Author(s):  
P. Kalkavouras ◽  
E. Bossioli ◽  
S. Bezantakos ◽  
A. Bougiatioti ◽  
N. Kalivitis ◽  
...  

Abstract. We examine the concentration levels and size distribution of submicron aerosol particles along with the concentration of trace gases and meteorological variables over the central (Santorini) and south Aegean Sea (Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm−3. On Crete (at Finokalia station), the fraction of nucleation-mode particles was diminished, but a higher number of Aitken-mode was observed as a result of the downward mixing and photochemistry. Aerosol and photochemical pollutants covaried throughout the measurement period: lower concentrations were observed during the period of strong Etesian flow (e.g. 43–70 ppbv for ozone, 1.5–5.7 μg m−3 for sulfate), but were substantially enhanced during the period of moderate winds (i.e., increase of up to 32 % for ozone, and 140 % for sulfate). To understand how new particle formation (NPF) affects cloud formation, we quantify its impact on the CCN levels and cloud droplet number concentration. We find that NPF can double CCN number (at 0.1 % supersaturation) but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background in the region.


2021 ◽  
Author(s):  
Fabian Mahrt ◽  
Yuanzhou Huang ◽  
Shaun Xu ◽  
Manabu Shiraiwa ◽  
Andreas Zuend ◽  
...  

<p>Aerosol particles are ubiquitous in the atmosphere and play an important role for air quality and Earth’s climate. Primary organic aerosol (POA), secondary organic aerosol (SOA), and secondary inorganic aerosol (SIA) constitute a significant mass fraction of these particles. POA, SOA, and SIA can become internally mixed within the same particle though different processes such as coagulation, gas–particle partitioning. To predict the role of these internally mixed particles in climate and air quality information on their phase behaviour is needed, i.e. information on the number and type of phases present within these particles. As an example, a particle with a single homogeneous liquid phase can have different radiative properties, reaction rates, uptake kinetics, and potential to change cloud microphysical properties by activating into a cloud droplet, compared to a particle with multiple liquid or solid phases.</p><p>In the current study we used Nile red, a solvatochromic dye, and fluorescence microscopy in order to determine the phase behaviour of POA+SOA+SIA particles. Squalane was used as a proxy of POA, ammonium sulfate was used as SIA and 1 of 23 different oxidized organic molecules were used as proxies of SOA. We demonstrate that three liquid phases often coexist within individual particles. We find that the phase behaviour strongly depends on the oxygen-to-carbon ratio of the SOA proxies. Experiments with SOA generated by dark ozonolysis of α-pinene in an environmental chamber are consistent with these observations. We also used thermodynamic and kinetic modelling to investigate the atmospheric implications of our experimental results.</p>


2016 ◽  
Author(s):  
V. Anil Kumar ◽  
G. Pandithurai ◽  
P. P. Leena ◽  
K. K. Dani ◽  
P. Murugavel ◽  
...  

Abstract. The effect of aerosols on cloud droplet number concentration and droplet effective radius are investigated from ground-based measurements over a high-altitude site where in clouds pass over the surface. First aerosol indirect effect AIE estimates were made using i) relative changes in cloud droplet number concentration (AIEn) and ii) relative changes in droplet effective radius (AIEs) with relative changes in aerosol for different LWC values. AIE estimates from two different methods reveal that there is systematic overestimation in AIEn as compared to that of AIEs. Aerosol indirect effects (AIEn and AIEs) and Dispersion effect (DE) at different liquid water content (LWC) regimes ranging from 0.05 to 0.50 gm-3 were estimated. The analysis demonstrates that there is overestimation of AIEn as compared to AIEs which is mainly due to DE. Aerosol effects on spectral dispersion in droplet size distribution plays an important role in altering Twomey’s cooling effect and thereby changes in climate. This study shows that the higher DE in the medium LWC regime which offsets the AIE by 30%.


Sign in / Sign up

Export Citation Format

Share Document