scholarly journals Future impact of non-land based traffic emissions on atmospheric ozone and OH – an optimistic scenario and a possible mitigation strategy

2011 ◽  
Vol 11 (6) ◽  
pp. 16801-16859
Author(s):  
Ø. Hodnebrog ◽  
T. K. Berntsen ◽  
O. Dessens ◽  
M. Gauss ◽  
V. Grewe ◽  
...  

Abstract. The impact of future emissions from aviation and shipping on the atmospheric chemical composition has been estimated using an ensemble of six different atmospheric chemistry models. This study considers an optimistic emission scenario (B1) taking into account e.g. rapid introduction of clean and resource-efficient technologies, and a mitigation option for the aircraft sector (B1 ACARE), assuming further technological improvements. Results from sensitivity simulations, where emissions from each of the transport sectors were reduced by 5 %, show that emissions from both aircraft and shipping will have a larger impact on atmospheric ozone and OH in near future (2025; B1) and for longer time horizons (2050; B1) compared to recent time (2000). However, the ozone and OH impact from aircraft can be reduced substantially in 2050 if the technological improvements considered in the B1 ACARE will be achieved. Shipping emissions have the largest impact in the marine boundary layer and their ozone contribution may exceed 4 ppb (scaled to 100 %) over the North Atlantic Ocean in the future (2050; B1) during northern summer (July). In the zonal mean, ship-induced ozone relative to the background levels may exceed 12 % near the surface. Corresponding numbers for OH are 6.0 × 105 molecules cm−3 and 30 %, respectively. This large impact on OH from shipping leads to a relative methane lifetime reduction of 3.92(±0.48) % on the global average in 2050 B1 (ensemble mean CH4 lifetime is 8.0(±1.0) yr), compared to 3.68(±0.47) % in 2000. Aircraft emissions have about 4 times higher ozone enhancement efficiency (ozone molecules enhanced relative to NOx molecules emitted) than shipping emissions, and the maximum impact is found in the UTLS region. Zonal mean aircraft-induced ozone could reach up to 5 ppb at northern mid- and high latitudes during future summer (July 2050; B1), while the relative impact peaks during northern winter (January) with a contribution of 4.2 %. Although the aviation-induced impact on OH is lower than for shipping, it still causes a reduction in the relative methane lifetime of 1.68(±0.38) % in 2050 B1. However, for B1 ACARE the perturbation is reduced to 1.17(±0.28) %, which is lower than the year 2000 estimate of 1.30(±0.30) %. Based on the fully scaled perturbations we calculate net radiative forcings from the six models taking into account ozone, methane (including stratospheric water vapour), and methane-induced ozone changes. For the B1 scenario, shipping leads to a net cooling with radiative forcings of −28.0(±5.1) and −30.8(±4.8) mW m−2 in 2025 and 2050, respectively, due to the large impact on OH and thereby methane lifetime reductions. Corresponding values for the aviation sector shows a net warming effect with 3.8(±6.1) and 1.9(±6.3) mW m−2, respectively, but with a small net cooling of −0.6(±4.6) mW m−2 for B1 ACARE in 2050.

2011 ◽  
Vol 11 (21) ◽  
pp. 11293-11317 ◽  
Author(s):  
Ø. Hodnebrog ◽  
T. K. Berntsen ◽  
O. Dessens ◽  
M. Gauss ◽  
V. Grewe ◽  
...  

Abstract. The impact of future emissions from aviation and shipping on the atmospheric chemical composition has been estimated using an ensemble of six different atmospheric chemistry models. This study considers an optimistic emission scenario (B1) taking into account e.g. rapid introduction of clean and resource-efficient technologies, and a mitigation option for the aircraft sector (B1 ACARE), assuming further technological improvements. Results from sensitivity simulations, where emissions from each of the transport sectors were reduced by 5%, show that emissions from both aircraft and shipping will have a larger impact on atmospheric ozone and OH in near future (2025; B1) and for longer time horizons (2050; B1) compared to recent time (2000). However, the ozone and OH impact from aircraft can be reduced substantially in 2050 if the technological improvements considered in the B1 ACARE will be achieved. Shipping emissions have the largest impact in the marine boundary layer and their ozone contribution may exceed 4 ppbv (when scaling the response of the 5% emission perturbation to 100% by applying a factor 20) over the North Atlantic Ocean in the future (2050; B1) during northern summer (July). In the zonal mean, ship-induced ozone relative to the background levels may exceed 12% near the surface. Corresponding numbers for OH are 6.0 × 105 molecules cm−3 and 30%, respectively. This large impact on OH from shipping leads to a relative methane lifetime reduction of 3.92 (±0.48) on the global average in 2050 B1 (ensemble mean CH4 lifetime is 8.0 (±1.0) yr), compared to 3.68 (±0.47)% in 2000. Aircraft emissions have about 4 times higher ozone enhancement efficiency (ozone molecules enhanced relative to NOx molecules emitted) than shipping emissions, and the maximum impact is found in the UTLS region. Zonal mean aircraft-induced ozone could reach up to 5 ppbv at northern mid- and high latitudes during future summer (July 2050; B1), while the relative impact peaks during northern winter (January) with a contribution of 4.2%. Although the aviation-induced impact on OH is lower than for shipping, it still causes a reduction in the relative methane lifetime of 1.68 (±0.38)% in 2050 B1. However, for B1 ACARE the perturbation is reduced to 1.17 (±0.28)%, which is lower than the year 2000 estimate of 1.30 (±0.30)%. Based on the fully scaled perturbations we calculate net radiative forcings from the six models taking into account ozone, methane (including stratospheric water vapour), and methane-induced ozone changes. For the B1 scenario, shipping leads to a net cooling with radiative forcings of −28.0 (±5.1) and −30.8 (±4.8) mW m−2 in 2025 and 2050, respectively, due to the large impact on OH and, thereby, methane lifetime reductions. Corresponding values for the aviation sector shows a net warming effect with 3.8 (±6.1) and 1.9 (±6.3) mW m−2, respectively, but with a small net cooling of -0.6 (±4.6) mW m−2 for B1 ACARE in 2050.


2013 ◽  
Vol 13 (12) ◽  
pp. 32423-32457 ◽  
Author(s):  
R. T. Lidster ◽  
J. F. Hamilton ◽  
J. D. Lee ◽  
A. C. Lewis ◽  
J. R. Hopkins ◽  
...  

Abstract. Reaction with the hydroxyl radical (OH) is the dominant removal mechanism for virtually all volatile organic compounds (VOCs) in the atmosphere, however it can be difficult to reconcile measured OH reactivity with known sinks. Unresolved higher molecular weight VOCs contribute to OH sinks, of which monoaromatics are potentially an important sub-class. A method based on comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-TOFMS) has been developed that extends the degree with which larger VOCs can be individually speciated from whole air samples (WAS). The technique showed excellent sensitivity, resolution and good agreement with an established GC-FID method, for compounds amenable to analysis on both instruments. Measurements have been made of VOCs within the UK east coast marine boundary layer and free troposphere, using samples collected from five aircraft flights in winter 2011. Ten monoaromatic compounds with an array of different alkyl ring substituents have been quantified, in addition to the simple aromatics, benzene, toluene, ethyl benzene and σm- and p-xylene. These additional compounds were then included into constrained box model simulations of atmospheric chemistry occurring at two UK rural and suburban field sites in order to assess the potential impact of these larger monoaromatics species on OH reactivity; they have been calculated to contribute an additional 2–6% to the overall modelled OH loss rate, providing a~maximum additional OH sink of ~0.9 s−1.


2012 ◽  
Vol 12 (8) ◽  
pp. 20975-21012
Author(s):  
Ø. Hodnebrog ◽  
T. K. Berntsen ◽  
O. Dessens ◽  
M. Gauss ◽  
V. Grewe ◽  
...  

Abstract. The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario. As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80° N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000. Radiative Forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a~marginal cooling of −0.38 ± 13 mW m−2 in 2000 to a relatively strong cooling of −32 ± 8.9 (B1) or −31 ± 20 mW m−2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from −20 ± 5.4 mW m−2 in 2000 to −31 ± 4.8 (B1) or −40 ± 11 mW m−2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 13 ± 7.9 mW m−2 in 2000 to a slightly negative net RF of −2.9 ± 1.7 (B1) or −3.3 ± 3.8 (A1B) mW m−2 in the middle of this century. The negative net RF from ROAD is temporary and induced by the strong decline in ROAD emissions prior to 2050, which only affects the methane cooling term due to the longer lifetime of CH4 compared to O3. The O3 RF from AIR in 2050 is strongly dependent on scenario and ranges from 19 ± 6.8 (B1 ACARE) to 62 ± 13.6 mW m−2 (A1B). There is also a considerable span in the net RF from AIR in 2050, ranging from −0.54 ± 4.6 (B1 ACARE) to 12 ± 11 (A1B) mW m−2 compared to 6.5 ± 2.1 mW m−2 in 2000.


2012 ◽  
Vol 12 (24) ◽  
pp. 12211-12225 ◽  
Author(s):  
Ø. Hodnebrog ◽  
T. K. Berntsen ◽  
O. Dessens ◽  
M. Gauss ◽  
V. Grewe ◽  
...  

Abstract. The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario. As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80° N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000. Radiative forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a marginal cooling of −0.44 ± 13 mW m−2 in 2000 to a relatively strong cooling of −32 ± 9.3 (B1) or −32 ± 18 mW m−2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from −19 ± 5.3 mW m−2 in 2000 to −31 ± 4.8 (B1) or −40 ± 9 mW m−2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 12 ± 8.5 mW m−2 in 2000 to a slightly negative net RF of −3.1 ± 2.2 (B1) or −3.1 ± 3.4 (A1B) mW m−2 in the middle of this century. The negative net RF from ROAD is temporary and induced by the strong decline in ROAD emissions prior to 2050, which only affects the methane cooling term due to the longer lifetime of CH4 compared to O3. The O3 RF from AIR in 2050 is strongly dependent on scenario and ranges from 19 ± 6.8 (B1 ACARE) to 61 ± 14 mW m−2 (A1B). There is also a considerable span in the net RF from AIR in 2050, ranging from −0.54 ± 4.6 (B1 ACARE) to 12 ± 11 (A1B) mW m−2 compared to 6.6 ± 2.2 mW m−2 in 2000.


2015 ◽  
Vol 15 (20) ◽  
pp. 29705-29745
Author(s):  
D. Neumann ◽  
V. Matthias ◽  
J. Bieser ◽  
A. Aulinger ◽  
M. Quante

Abstract. Coarse sea salt particles are emitted ubiquitously from the oceans' surfaces by wave breaking and bubble bursting processes. These particles impact atmospheric chemistry by affecting condensation of gas-phase species and nucleation of new fine particles, particularly in regions with high air pollution. In this study, atmospheric particle concentrations are modeled for the North and Baltic Sea regions, Northwestern Europe, using the Community Multiscale Air Quality (CMAQ) modeling system and evaluated against European Monitoring and Evaluation Programme (EMEP) measurement data. As model extension, sea salt emissions are scaled by water salinity because of low salinity in large parts of the Baltic Sea and in certain river estuaries. The resulting improvement in predicted sea salt concentrations is assessed. The contribution of surf zone emissions is separately considered. Additionally, the impact of sea salt particles on atmospheric nitrate, ammonium and sulfate concentrations is evaluated. The comparisons show that sea salt concentrations are commonly overestimated at coastal stations and partly underestimated when going inland. The introduced salinity scaling improves predicted Baltic Sea sea salt concentrations considerably. Dates of measured peak concentrations are appropriately reproduced by the model. The impact of surf zone emissions is negligible in both seas. Nevertheless, they might be relevant because surf zone emissions were cut at an upper threshold in this study. Deactivating sea salt leads to a minor increase of NH4+ and NO3- and a minor decrease of SO42- concentrations. However, the overall effect is very low and lower than the deviation from measurements. Size resolved measurements of Na+, NH4+, NO3-, and SO42- are needed for a more detailed analysis on the impact of sea salt particles.


2021 ◽  
Author(s):  
Ilaria Stendardo ◽  
Bruno Buongiorno Nardelli ◽  
Sara Durante

<p>In the subpolar North Atlantic Ocean, Subpolar Mode Waters (SPMWs) are formed during late winter convection following the cyclonic circulation of the subpolar gyre. SPMWs participate in the upper flow of the Atlantic overturning circulation (AMOC) and provide much of the water that is eventually transformed into several components of the North Atlantic deep water (NADW), the cold, deep part of the AMOC. In a warming climate, an increase in upper ocean stratification is expected to lead to a reduced ventilation and a loss of oxygen. Thus, understanding how mode waters are affected by ventilation changes will help us to better understand the variability in the AMOC. In particular, we would like to address how the volume occupied by SPMWs has varied over the last decades due to ventilation changes, and what are the aspects driving the subpolar mode water formation, their interannual variations as well as the impact of the variability in the mixing and subduction and vertical dynamics on ocean deoxygenation. For this purpose, we use two observation-based 3D products from Copernicus Marine Service (CMEMS), the ARMOR3D and the OMEGA3D datasets. The first consists of 3D temperature and salinity fields, from the surface to 1500 m depth, available weekly over a regular grid at 1/4° horizontal resolution from 1993 to present. The second consists of observation-based quasi-geostrophic vertical and horizontal ocean currents with the same temporal and spatial resolution as ARMOR3D.</p>


2009 ◽  
Vol 5 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Y.-X. Li ◽  
H. Renssen ◽  
A. P. Wiersma ◽  
T. E. Törnqvist

Abstract. The 8.2 ka event is the most prominent abrupt climate change in the Holocene and is often believed to result from catastrophic drainage of proglacial lakes Agassiz and Ojibway (LAO) that routed through the Hudson Bay and the Labrador Sea into the North Atlantic Ocean, and perturbed Atlantic meridional overturning circulation (MOC). One key assumption of this triggering mechanism is that the LAO freshwater drainage was dispersed over the Labrador Sea. Recent data, however, show no evidence of lowered δ18O values, indicative of low salinity, from the open Labrador Sea around 8.2 ka. Instead, negative δ18O anomalies are found close to the east coast of North America, extending as far south as Cape Hatteras, North Carolina, suggesting that the freshwater drainage may have been confined to a long stretch of continental shelf before fully mixing with North Atlantic Ocean water. Here we conduct a sensitivity study that examines the effects of a southerly drainage route on the 8.2 ka event with the ECBilt-CLIO-VECODE model. Hosing experiments of four routing scenarios, where freshwater was introduced to the Labrador Sea in the northerly route and to three different locations along the southerly route, were performed to investigate the routing effects on model responses. The modeling results show that a southerly drainage route is possible but generally yields reduced climatic consequences in comparison to those of a northerly route. This finding implies that more freshwater would be required for a southerly route than for a northerly route to produce the same climate anomaly. The implicated large amount of LAO drainage for a southerly routing scenario is in line with a recent geophysical modelling study of gravitational effects on sea-level change associated with the 8.2 ka event, which suggests that the volume of drainage might be larger than previously estimated.


2017 ◽  
Vol 17 (11) ◽  
pp. 6743-6757 ◽  
Author(s):  
Narendra Ojha ◽  
Andrea Pozzer ◽  
Dimitris Akritidis ◽  
Jos Lelieveld

Abstract. Layers with strongly enhanced ozone concentrations in the middle–upper troposphere, referred to as secondary ozone peaks (SOPs), have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to (i) investigate the processes causing SOPs, (ii) explore both their frequency of occurrence and seasonality, and (iii) assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV) and a stratospheric ozone tracer (O3s) in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT) of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days) transported to the Himalayas. Analysis of a 15-year (2000–2014) EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May), while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO) over the central Himalayas by up to 21 %.


2020 ◽  
Author(s):  
Luca Centurioni ◽  
Verena Hormann

<p>Accurate estimates and forecasts of physical and biogeochemical processes at the air-sea interface must rely on integrated in-situ and satellite surface observations of essential Ocean/Climate Variables (EOVs /ECVs). Such observations, when sustained over appropriate temporal and spatial scales, are particularly powerful in constraining and improving the skills, impact and value of weather, ocean and climate forecast models. The calibration and validation of satellite ocean products also rely on in-situ observations, thus creating further positive high-impact applications of observing systems designed for global sustained observations of EOV and ECVs.</p><p>The Global Drifter Program has operated uninterrupted for several decades and constitutes a particular successful example of a network of multiparametric platforms providing observations of climate, weather and oceanographic relevance (e.g. air-pressure, sea surface temperature, ocean currents). This presentation will review the requirements of sustainability of an observing system such as the GDP (i.e. cost effectiveness, peer-review of the observing methodology and of the technology, free data access and international cooperation), will present some key metrics recently used to quantify the impact of drifter observations, and will discuss two prominent examples of GDP regional observations and the transition to operations of novel platforms, such us wind and directional wave spectra drifters, in sparsely sampled regions of the Arabian Sea and of the North Atlantic Ocean.</p>


2016 ◽  
Author(s):  
Narendra Ojha ◽  
Andrea Pozzer ◽  
Dimitris Akritidis ◽  
Jos Lelieveld

Abstract. Layers with strongly enhanced ozone concentrations in the middle-upper troposphere, referred to as Secondary Ozone Peaks (SOPs), have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to (i) investigate the processes causing SOPs, (ii) explore both their frequency of occurrence and seasonality, and (iii) assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV) and a stratospheric ozone tracer (O3s) in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by Stratosphere-to-Troposphere Transport (STT) of ozone. The spatial distribution of O3s further shows that such effects are in general confined to the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle-East, as well as nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days) transported to the Himalayas. Analysis of a 15-year (2000–2014) EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May), while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the Tropospheric Column Ozone (TCO) over the central Himalayas by up to 26 %.


Sign in / Sign up

Export Citation Format

Share Document