scholarly journals Atmospheric measurements of ratios between CO<sub>2</sub> and co-emitted species from traffic: a tunnel study in the Paris megacity

2014 ◽  
Vol 14 (14) ◽  
pp. 20197-20229 ◽  
Author(s):  
L. Ammoura ◽  
I. Xueref-Remy ◽  
V. Gros ◽  
A. Baudic ◽  
B. Bonsang ◽  
...  

Abstract. Measurements of CO2, CO, NOx and selected Volatile Organic Compounds (VOCs) concentrations have been performed continuously during ten days in the Guy Môquet tunnel in Thiais, in a peri-urban area about 15 km south from the centre of Paris, between 28 September and 8 October 2012. This dataset is used here to identify the characteristics of traffic-emitted CO2 by evaluating its ratios to co-emitted species, for the first time in the Paris region. High coefficients of determination (r2 > 0.7) are observed between CO2 and some compounds which are characteristic of the traffic source (CO, NOx, benzene, xylenes and acetylene). Weak correlations (r2 < 0.2) are found with species such as propane, n-butane, i-butane, that are associated with fuel evaporation, an insignificant source for CO2. To better characterize the traffic signal, we focus only on species that are well correlated with CO2 and rush hour periods characterized by the highest traffic-related concentrations. To those concentrations, we remove the nighttime averaged weekday concentration obtained for each species that we infer to be the most appropriate background signal for our study. Then, we calculate observed Δspecies ΔCO2 ratios that we compare with the ones provided by the 2010 bottom-up high resolved regional emission inventory from Airparif, the association in charge of monitoring the air quality in Île-de-France, focusing on local emission data for the specific road of the tunnel. We find an excellent agreement (2%) between the local inventory emission CO/CO2 ratio with our observed ΔCO / ΔCO2 ratio. Former tunnel experiments carried out elsewhere in the world provided observed ΔCO / ΔCO2 ratios that differ from 49% to 592% to ours. This variability can be related to technological improvement of vehicles, differences in driving conditions and fleet compositions. We also find a satisfactory agreement with the Airparif inventory for n-propylbenzene, n-pentane and xylenes to CO2 ratios. For most of the other species, the ratios obtained from the local emission inventory overestimate the observed ratios to CO2, by 36% to more than 300%. However, the emission ratios of NOx, o-xylene and i-pentane are underestimated by 39% to 79%. One main cause of such high differences between the inventory and our observations is likely the obsolete feature of the VOCs speciation matrix of the inventory that was not updated since 1998, although law regulations on some VOCs occurred since that time. Our study bears important consequences for the characterisation of the urban CO2 plume and for atmospheric inverse modelling of urban CO2 emissions that are discussed in the conclusion.

2014 ◽  
Vol 14 (23) ◽  
pp. 12871-12882 ◽  
Author(s):  
L. Ammoura ◽  
I. Xueref-Remy ◽  
V. Gros ◽  
A. Baudic ◽  
B. Bonsang ◽  
...  

Abstract. Measurements of CO2, CO, NOx and selected Volatile Organic Compounds (VOCs) mole fractions were performed continuously during a 10-day period in the Guy Môquet tunnel in Thiais, a peri-urban area about 15 km south of the centre of Paris, between 28 September and 8 October 2012. This data set is used here to identify the characteristics of traffic-emitted CO2 by evaluating its ratios to co-emitted species for the first time in the Paris region. High coefficients of determination (r2 > 0.7) are observed between CO2 and certain compounds that are characteristic of the traffic source (CO, NOx, benzene, xylenes and acetylene). Weak correlations (r2 < 0.2) are found with species such as propane, n-butane and i-butane that are associated with fuel evaporation, an insignificant source for CO2. To better characterise the traffic signal we focus only on species that are well-correlated with CO2 and on rush-hour periods characterised by the highest traffic-related mole fractions. From those mole fractions we remove the nighttime-average weekday mole fraction obtained for each species that we infer to be the most appropriate background signal for our study. Then we calculate observed Δspecies / ΔCO2 ratios, which we compare with the ones provided by the 2010 bottom–up high-resolved regional emission inventory from Airparif (the association in charge of monitoring the air quality in Île-de-France), focusing on local emission data for the specific road of the tunnel. We find an excellent agreement (2%) between the local inventory emission CO / CO2 ratio and our observed ΔCO / ΔCO2 ratio. Former tunnel experiments carried out elsewhere in the world provided observed ΔCO / ΔCO2 ratios that differ from 49 to 592% to ours. This variability can be related to technological improvement of vehicles, differences in driving conditions, and fleet composition. We also find a satisfactory agreement with the Airparif inventory for n-propylbenzene, n-pentane and xylenes to CO2 ratios. For most of the other species, the ratios obtained from the local emission inventory overestimate the observed ratios to CO2 by 34 to more than 300%. However, the emission ratios of NOx, o-xylene and i-pentane are underestimated by 30 to 79%. One main cause of such high differences between the inventory and our observations is likely the obsolete feature of the VOCs speciation matrix of the inventory that has not been updated since 1998, although law regulations on some VOCs have occurred since that time. Our study bears important consequences, discussed in the conclusion, for the characterisation of the urban CO2 plume and for atmospheric inverse modelling of urban CO2 emissions.


2011 ◽  
Vol 8 (1) ◽  
pp. 91 ◽  
Author(s):  
Cécile Gaimoz ◽  
Stéphane Sauvage ◽  
Valérie Gros ◽  
Frank Herrmann ◽  
Jonathan Williams ◽  
...  

Environmental context Volatile organic compounds are key compounds in atmospheric chemistry as precursors of ozone and secondary organic aerosols. To determine their impact at a megacity scale, a first important step is to characterise their sources. We present an estimate of volatile organic compound sources in Paris based on a combination of measurements and model results. The data suggest that the current emission inventory strongly overestimates the volatile organic compounds emitted from solvent industries, and thus needs to be corrected. Abstract A positive matrix factorisation model has been used for the determination of volatile organic compound (VOC) source contributions in Paris during an intensive campaign (May–June 2007). The major sources were traffic-related emissions (vehicle exhaust, 22% of the total mixing ratio of the measured VOCs, and fuel evaporation, 17%), with the remaining emissions from remote industrial sources (35%), natural gas and background (13%), local sources (7%), biogenic and fuel evaporation (5%) and wood-burning (2%). It was noted that the remote industrial contribution was highly dependent on the air-mass origin. During the period of oceanic influences (when only local and regional pollution was observed), this source made a relatively low contribution (<15%), whereas the source contribution linked to traffic was high (54%). During the period of continental influences (when additional continental pollution was observed), remote industrial sources played a dominant role, contributing up to 50% of measured VOCs. Finally, the positive matrix factorisation results obtained during the oceanic air mass-influenced period were compared with the local emission inventory. This comparison suggests that the VOC emission from solvent industries might be overestimated in the inventory, consistent with findings in other European cities.


2009 ◽  
Vol 6 (6) ◽  
pp. 1059-1087 ◽  
Author(s):  
M. Karl ◽  
A. Guenther ◽  
R. Köble ◽  
A. Leip ◽  
G. Seufert

Abstract. We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC), on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC) emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.


2013 ◽  
Vol 13 (17) ◽  
pp. 8815-8832 ◽  
Author(s):  
B. Yuan ◽  
W. W. Hu ◽  
M. Shao ◽  
M. Wang ◽  
W. T. Chen ◽  
...  

Abstract. Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated chemical losses of most VOC species during the Changdao campaign. A photochemical-age-based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory data, but determined emission ratios of oxygenated VOCs (OVOCs) are significantly higher than those from emission inventory data. The photochemical-age-based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of organic aerosol (OA) to CO is determined to be 14.9 μg m−3 ppm−1, and secondary organic aeorosols (SOA) are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO) and low-NOx conditions (6.5 μg m−3 ppm−1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (> C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. The SOA formation potential of primary VOC emissions determined from field campaigns in Beijing and Pearl River Delta (PRD) is lower than the measured SOA levels reported in the two regions, indicating SOA formation is also beyond explainable by VOC oxidation in the two city clusters.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1736
Author(s):  
Gabriel Kiss ◽  
Gerlinde Rusu ◽  
Geza Bandur ◽  
Iosif Hulka ◽  
Daniel Romecki ◽  
...  

An industrially manufactured recycled polyol, obtained by acidolysis process, was for the first time proved to be a possible replacement of the reference fossil-based polyol in a low-density formulation suitable for industrial production of flexible polyurethane foams. The influence of increasing recycled polyol amounts on the properties of the polyurethane foam has been studied, also performing foam emission tests to evaluate the environmental impact. Using 10 pbw recycled polyol in the standard formulation, significant differences of the physical properties were not observed, but increase of the recycled polyol amount to 30 pbw led to a dramatic decrease of the foam air flow and a very tight foam. To overcome this drawback, N,N′-bis[3-(dimethylamino)propyl]urea was selected as tertiary amine catalyst, enabling the preservation of foam properties even at high recycled polyol level (30 pbw). Foam emission data demonstrated that this optimized foam formulation also led to an important reduction of volatile organic compounds. The results open the way for further optimization studies in low-density flexible polyurethane foam formulations, to increase the reutilization of the polyurethane waste and reduce the amount of petroleum-based raw materials.


2013 ◽  
Vol 13 (3) ◽  
pp. 6631-6679 ◽  
Author(s):  
B. Yuan ◽  
W. W. Hu ◽  
M. Shao ◽  
M. Wang ◽  
W T.. Chen ◽  
...  

Abstract. Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs) are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m−3 ppm−1 and SOA are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO) and low-NOx condition (6.5 μg m−3 ppm−1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (>C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD), indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0–13.7 Tg yr−1, with a fraction of at least 2.7 Tg yr−1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 495
Author(s):  
Shixing Zhou ◽  
Toshmatov Zokir ◽  
Yu Mei ◽  
Lijing Lei ◽  
Kai Shi ◽  
...  

The chemical profile and allelopathic effect of the volatile organic compounds (VOCs) produced by a dominant shrub Serphidium kaschgaricum (Krasch.) Poljak. growing in northwestern China was investigated for the first time. Serphidium kaschgaricu was found to release volatile compounds into the surroundings to affect other plants’ growth, with its VOCs suppressing root elongation of Amaranthus retroflexus L. and Poa annua L. by 65.47% and 60.37% at 10 g/1.5 L treatment, respectively. Meanwhile, volatile oils produced by stems, leaves, flowers and flowering shoots exhibited phytotoxic activity against A. retroflexus and P. annua. At 0.5 mg/mL, stem, leaf and flower oils significantly reduced seedling growth of the receiver plants, and 1.5 mg/mL oils nearly completely prohibited seed germination of both species. GC/MS analysis revealed that among the total 37 identified compounds in the oils, 19 of them were common, with eucalyptol (43.00%, 36.66%, 19.52%, and 38.68% in stem, leaf, flower and flowering shoot oils, respectively) and camphor (21.55%, 24.91%, 21.64%, and 23.35%, respectively) consistently being the dominant constituents in all oils. Eucalyptol, camphor and their mixture exhibited much weaker phytotoxicity compared with the volatile oils, implying that less abundant compounds in the volatile oil might contribute significantly to the oils’ activity. Our results suggested that S. kaschgaricum was capable of synthesizing and releasing allelopathic volatile compounds into the surroundings to affect neighboring plants’ growth, which might improve its competitiveness thus facilitate the establishment of dominance.


Analytica ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 38-49
Author(s):  
Ettore Guerriero ◽  
Massimo Iorizzo ◽  
Marina Cerasa ◽  
Ivan Notardonato ◽  
Bruno Testa ◽  
...  

The paper would like to show a direct injection into GC-MS/QqQ for the determination of secondary aromas in white wine samples fermented in two different ways. The procedure has been compared with more traditional methods used in this field, i.e., headspace analysis and liquid–liquid extraction. The application of such direct injection, for the first time in the literature, allows us to analyze Volatile Organic Compounds (VOCs) in the range 0.1–100 µg mL−1, with Limits of Detection (LODs) and Limits of Quantification (LOQs) between 0.01–0.05 µg mL−1 and 0.03–0.09 µg mL−1, respectively, intraday and interday below 5.6% and 8.5%, respectively, and recoveries above 92% at two different fortification levels. The procedure has been applied to real wine samples: it evidences how the fermentation in wood (cherry) barrel yields higher VOC levels than ones in wine fermented in steel tank, causing production of different secondary aromas and different relative flavors.


2014 ◽  
Vol 14 (20) ◽  
pp. 10963-10976 ◽  
Author(s):  
J. J. P. Kuenen ◽  
A. J. H. Visschedijk ◽  
M. Jozwicka ◽  
H. A. C. Denier van der Gon

Abstract. Emissions to air are reported by countries to EMEP. The emissions data are used for country compliance checking with EU emission ceilings and associated emission reductions. The emissions data are also necessary as input for air quality modelling. The quality of these "official" emissions varies across Europe. As alternative to these official emissions, a spatially explicit high-resolution emission inventory (7 × 7 km) for UNECE-Europe for all years between 2003 and 2009 for the main air pollutants was made. The primary goal was to supply air quality modellers with the input they need. The inventory was constructed by using the reported emission national totals by sector where the quality is sufficient. The reported data were analysed by sector in detail, and completed with alternative emission estimates as needed. This resulted in a complete emission inventory for all countries. For particulate matter, for each source emissions have been split in coarse and fine particulate matter, and further disaggregated to EC, OC, SO4, Na and other minerals using fractions based on the literature. Doing this at the most detailed sectoral level in the database implies that a consistent set was obtained across Europe. This allows better comparisons with observational data which can, through feedback, help to further identify uncertain sources and/or support emission inventory improvements for this highly uncertain pollutant. The resulting emission data set was spatially distributed consistently across all countries by using proxy parameters. Point sources were spatially distributed using the specific location of the point source. The spatial distribution for the point sources was made year-specific. The TNO-MACC_II is an update of the TNO-MACC emission data set. Major updates included the time extension towards 2009, use of the latest available reported data (including updates and corrections made until early 2012) and updates in distribution maps.


Sign in / Sign up

Export Citation Format

Share Document