scholarly journals Model-based scenarios of Mediterranean droughts

2007 ◽  
Vol 12 ◽  
pp. 145-151 ◽  
Author(s):  
M. Weiß ◽  
M. Flörke ◽  
L. Menzel ◽  
J. Alcamo

Abstract. This study examines the change in current 100-year hydrological drought frequencies in the Mediterranean in comparison to the 2070s as simulated by the global model WaterGAP. The analysis considers socio-economic and climate changes as indicated by the IPCC scenarios A2 and B2 and the global general circulation model ECHAM4. Under these conditions today's 100-year drought is estimated to occur 10 times more frequently in the future over a large part of the Northern Mediterranean while in North Africa, today's 100-year drought will occur less frequently. Water abstractions are shown to play a minor role in comparison to the impact of climate change, but can intensify the situation.

2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2010 ◽  
Vol 23 (13) ◽  
pp. 3474-3496 ◽  
Author(s):  
Amy H. Butler ◽  
David W. J. Thompson ◽  
Ross Heikes

Abstract The steady-state extratropical atmospheric response to thermal forcing is investigated in a simple atmospheric general circulation model. The thermal forcings qualitatively mimic three key aspects of anthropogenic climate change: warming in the tropical troposphere, cooling in the polar stratosphere, and warming at the polar surface. The principal novel findings are the following: 1) Warming in the tropical troposphere drives two robust responses in the model extratropical circulation: poleward shifts in the extratropical tropospheric storm tracks and a weakened stratospheric Brewer–Dobson circulation. The former result suggests heating in the tropical troposphere plays a fundamental role in the poleward contraction of the storm tracks found in Intergovernmental Panel on Climate Change (IPCC)-class climate change simulations; the latter result is in the opposite sense of the trends in the Brewer–Dobson circulation found in most previous climate change experiments. 2) Cooling in the polar stratosphere also drives a poleward shift in the extratropical storm tracks. The tropospheric response is largely consistent with that found in previous studies, but it is shown to be very sensitive to the level and depth of the forcing. In the stratosphere, the Brewer–Dobson circulation weakens at midlatitudes, but it strengthens at high latitudes because of anomalously poleward heat fluxes on the flank of the polar vortex. 3) Warming at the polar surface drives an equatorward shift of the storm tracks. The storm-track response to polar warming is in the opposite sense of the response to tropical tropospheric heating; hence large warming over the Arctic may act to attenuate the response of the Northern Hemisphere storm track to tropical heating. 4) The signs of the tropospheric and stratospheric responses to all thermal forcings considered here are robust to seasonal changes in the basic state, but the amplitude and details of the responses exhibit noticeable differences between equinoctial and wintertime conditions. Additionally, the responses exhibit marked nonlinearity in the sense that the response to multiple thermal forcings applied simultaneously is quantitatively different from the sum of the responses to the same forcings applied independently. Thus the response of the model to a given thermal forcing is demonstrably dependent on the other thermal forcings applied to the model.


Sign in / Sign up

Export Citation Format

Share Document