scholarly journals Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites

2021 ◽  
Vol 14 (2) ◽  
pp. 1379-1403
Author(s):  
Rosaria E. Pileci ◽  
Robin L. Modini ◽  
Michele Bertò ◽  
Jinfeng Yuan ◽  
Joel C. Corbin ◽  
...  

Abstract. The mass concentration of black carbon (BC) particles in the atmosphere has traditionally been quantified with two methods: as elemental carbon (EC) concentrations measured by thermal–optical analysis and as equivalent black carbon (eBC) concentrations when BC mass is derived from particle light absorption coefficient measurements. Over the last decade, ambient measurements of refractory black carbon (rBC) mass concentrations based on laser-induced incandescence (LII) have become more common, mostly due to the development of the Single Particle Soot Photometer (SP2) instrument. In this work, EC and rBC mass concentration measurements from field campaigns across several background European sites (Palaiseau, Bologna, Cabauw and Melpitz) have been collated and examined to identify the similarities and differences between BC mass concentrations measured by the two techniques. All EC concentration measurements in PM2.5 were performed with the EUSAAR-2 thermal–optical protocol. All rBC concentration measurements were performed with SP2 instruments calibrated with the same calibration material as recommended in the literature. The observed values of median rBC-to-EC mass concentration ratios on the single-campaign level were 0.53, 0.65, 0.97, 1.20 and 1.29, respectively, and the geometric standard deviation (GSD) was 1.5 when considering all data points from all five campaigns. This shows that substantial systematic bias between these two quantities occurred during some campaigns, which also contributes to the large overall GSD. Despite considerable variability in BC properties and sources across the whole dataset, it was not possible to clearly assign reasons for discrepancies to one or the other method, both known to have their own specific limitations and uncertainties. However, differences in the particle size range covered by these two methods were identified as one likely reason for discrepancies. Overall, the observed correlation between rBC and EC mass reveals a linear relationship with a constant ratio, thus providing clear evidence that both methods essentially quantify the same property of atmospheric aerosols, whereas systematic differences in measured absolute values by up to a factor of 2 can occur. This finding for the level of agreement between two current state-of-the-art techniques has important implications for studies based on BC mass concentration measurements, for example for the interpretation of uncertainties in inferred BC mass absorption coefficient values, which are required for modeling the radiative forcing of BC. Homogeneity between BC mass determination techniques is also very important for moving towards a routine BC mass measurement for air quality regulations.

2020 ◽  
Author(s):  
Rosaria E. Pileci ◽  
Robin L. Modini ◽  
Michele Bertò ◽  
Jinfeng Yuan ◽  
Joel C. Corbin ◽  
...  

Abstract. The mass concentration of black carbon (BC) particles in the atmosphere has traditionally been quantified with two methods: as elemental carbon (EC) concentrations measured by thermal-optical analysis and as equivalent black carbon (eBC) concentrations when BC mass is derived from particle light absorption coefficient measurements. Over the last decade, ambient measurements of refractory black carbon (rBC) mass concentrations based on laser-induced incandescence (LII) have become more common, mostly due to the development of the Single-Particle Soot Photometer (SP2) instrument. In this work, EC and rBC mass concentration measurements from field campaigns across several background European sites (Paris, Bologna, Cabauw and Melpitz) have been collated and examined to identify the similarities and differences between BC mass concentrations measured by the two techniques. All EC concentration measurements in PM2.5 were performed with the EUSAAR-2 thermal-optical protocol. All rBC concentration measurements were performed with SP2s calibrated with the same calibration material as recommended in the literature. The median ratio between observed rBC and EC mass concentrations was 0.92, when considering all data points from all five campaigns, and the corresponding geometric standard deviation (GSD) was 1.5. The minimal and maximal observed values of median rBC to EC mass concentration ratios on single campaign level were 0.53 and 1.29, respectively. This shows that substantial systematic bias between these two quantities occurred during some campaigns, which also contributes to the large overall GSD. On single campaign level, the relative spread of individual rBC to EC mass concentration ratios was typically between a factor of 1.2 and 1.3 (1 GSD), which indicates fairly good precision of both methods. Despite considerable variability of BC properties and sources across the whole data set, it was not possible to clearly assign reasons for discrepancies to one or the other method, both known to have their own specific limitations and uncertainties. However, differences in the particle size range covered by these two methods were identified as one likely reason for discrepancies. In particular, rBC to EC mass concentration ratios were found to be systematically less than unity, despite applying a correction for small BC cores that remain undetected by the SP2. This was observed when the rBC mass size distribution was shifted towards smaller modal diameter, which occurred during traffic emission dominated episodes. Overall, the high correlation between rBC and EC mass concentrations indicates that both methods essentially quantify the same property of atmospheric aerosols, whereas systematic differences in measured absolute values by up to a factor of 2 can occur. This finding for the level of agreement between two current state-of-the-art techniques has important implications for studies based on BC mass concentration measurements, for example for the interpretation of uncertainties of inferred BC mass absorption coefficient values, which are required for modelling the radiative forcing of BC. Homogeneity between BC mass determination techniques is very important also towards a routine BC mass measurement for air quality or human health regulations.


2012 ◽  
Vol 12 (4) ◽  
pp. 1681-1700 ◽  
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
K. Kamili ◽  
M. Merkel ◽  
...  

Abstract. An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.


2016 ◽  
Author(s):  
Saehee Lim ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
Stanislav Kutuzov ◽  
...  

Abstract. Black carbon (BC), emitted by fossil fuel combustion and biomass burning, is the second largest man-made contributor to global warming after carbon dioxide (Bond et al., 2013). However, limited information exists on its past emissions and atmospheric variability. In this study, we present the first high-resolution record of refractory BC (rBC, including mass concentration and size) reconstructed from ice cores drilled at a high-altitude Eastern European site in Mt. Elbrus (ELB), Caucasus (5115 m a.s.l.). The ELB ice core record, covering the period 1825–2013, reflects the atmospheric load of rBC particles at the ELB site transported from the European continent with a larger rBC input from sources located in the Eastern part of Europe. In the first half of the 20th century, European anthropogenic emissions resulted in a 1.5-fold increase in the ice core rBC mass concentrations as respect to its level in the preindustrial era (before 1850). The rBC mass concentrations increased by a 5-fold in 1960–1980, followed by a decrease until ~ 2000. Over the last decade, the rBC signal for summer time slightly increased. We have compared the signal with the atmospheric BC load simulated using past BC emissions (ACCMIP and MACCity inventories) and taken into account the contribution of different geographical region to rBC distribution and deposition at the ELB site. Interestingly, the observed rBC variability in the ELB ice core record since the 1960s is not in perfect agreement with the simulated atmospheric BC load. Similar features between the ice core rBC record and the best scenarios for the atmospheric BC load support that anthropogenic BC increase in the 20th century is reflected in the ELB ice core record. However, the peak in BC mass concentration observed in ~ 1970 in the ice core is estimated to occur a decade later from past inventories. BC emission inventories for the period 1960s–1970s may be underestimating European anthropogenic emissions. Furthermore, for summer time snow layers of the last 2000s, the slightly increasing trend of rBC deposition likely reflects recent changes in anthropogenic and biomass burning BC emissions in the Eastern part of Europe. Our study highlights that the past changes in BC emissions of Eastern Europe need to be considered in assessing on-going air quality regulation.


2016 ◽  
Author(s):  
Kgaugelo Euphinia Chiloane ◽  
Johan Paul Beukes ◽  
Pieter Gideon van Zyl ◽  
Petra Maritz ◽  
Ville Vakkari ◽  
...  

Abstract. After carbon dioxide (CO2), aerosol black carbon (BC) is considered to be the second most important contributor to global warming. Africa is one of the least studied continents, although it is regarded as the largest source region of atmospheric BC. Southern Africa is an important sub-source region, with savannah and grassland fires likely to contribute to elevated BC mass concentration levels. South Africa is the economic and industrial hub of southern Africa. To date, little BC mass concentration data have been presented for South Africa in the peer-reviewed public domain. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites, where continuous measurements have been conducted, i.e. Elandsfontein (EL), Welgegund (WG) and Marikana (MA), as well elemental carbon (EC) (determined by evolved carbon method) at five sites where samples were collected once a month on a filter and analysed off-line, i.e. Louis Trichardt (LT), Skukuza (SK), Vaal Triangle (VT), Amersfoort (AM) and Botsalano (BS). All these sites are located in the interior of South Africa. Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (WG, LT, SK, BS) and sites influenced by industrial activities and/or nearby settlements (EL, MA, VT and AM) ranged between 0.7 and 1.1, and 1.3 and 1.4 µg/m3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (EL, MA and WG), with the highest eBC mass concentrations measured during June to October, indicating contributions from household combustion in the cold winter months (June–August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at EL, MA and WG indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for MA and WG, household combustion and savannah, and grassland fires were the most significant sources, respectively. Possible contributing sources were explored in greater detail for EL, with five main sources being identified as coal-fired power stations, pyrometallurgical smelters, traffic, household combustion, as well as savannah and grassland fires. Industries on the Mpumalanga Highveld are often blamed for all forms of pollution, due to the NO2 hotspot over this area that is attributed to NOx emissions from industries and vehicle emissions from the Johannesburg-Pretoria megacity. However, a comparison of source strengths indicated that household combustion, and savannah and grassland fires were the most significant sources of eBC, particularly during winter and spring months, while coal-fired power stations, pyro-metallurgical smelters and traffic contribute to eBC mass concentration levels year round.


2017 ◽  
Vol 17 (7) ◽  
pp. 4799-4816 ◽  
Author(s):  
Yu-Hao Mao ◽  
Hong Liao ◽  
Hai-Shan Chen

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated June–July–August (JJA) and December–January–February (DJF) surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM; East Asian winter monsoon, EAWM) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = −0. 7 (−0.7) in GEOS-4 and −0.4 (−0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the 5 strongest EASM years, simulated JJA surface BC concentrations in the 5 weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the 5 strongest EAWM years, simulated DJF surface BC concentrations in the 5 weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere was 0.04 W m−2 (3 %; 0.03 W m−2, 2 %) higher in northern China but 0.06 W m−2 (14 %; 0.03 W m−2, 3 %) lower in southern China. In the weakest monsoon years, the weaker vertical convection at the elevated altitudes led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to −0.09 µg m−3 (−46 %) and −0.08 µg m−3 (−11 %) at 1–2 km in eastern China.


2020 ◽  
Vol 20 (13) ◽  
pp. 8139-8156
Author(s):  
Tobias Donth ◽  
Evelyn Jäkel ◽  
André Ehrlich ◽  
Bernd Heinold ◽  
Jacob Schacht ◽  
...  

Abstract. The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55∘) and a representative BC particle mass concentration of 5 ng g−1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2 W m−2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about −0.05 W m−2, even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d−1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d−1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds.


Author(s):  
James Brooks ◽  
James D. Allan ◽  
Paul I. Williams ◽  
Dantong Liu ◽  
Cathryn Fox ◽  
...  

<p><strong>Abstract.</strong> The vertical distribution in the physical and chemical properties of submicron aerosol has been characterised across northern India for the first time using airborne in-situ measurements. This study focusses primarily on the Indo-Gangetic Plain, a low-lying area in the north of India which commonly experiences high aerosol mass concentrations prior to the monsoon season. Data presented are from the UK Facility for Airborne Atmospheric Measurements BAe-146 research aircraft that performed flights in the region during the 2016 pre-monsoon (11<sup>th</sup> and 12<sup>th</sup> June) and monsoon (30<sup>th</sup> June to 11<sup>th</sup> July) seasons.</p> <p> Inside the Indo-Gangetic Plain boundary layer, organic matter dominated the submicron aerosol mass (43&amp;thinsp;%) followed by sulphate (29&amp;thinsp;%), ammonium (14&amp;thinsp;%), nitrate (7&amp;thinsp;%) and black carbon (7&amp;thinsp;%). However, outside the Indo-Gangetic Plain, sulphate was the dominant species contributing 44&amp;thinsp;% to the total submicron aerosol mass in the boundary layer, followed by organic matter (30&amp;thinsp;%), ammonium (14&amp;thinsp;%), nitrate (6&amp;thinsp;%) and black carbon (6&amp;thinsp;%). Chlorine mass concentrations were negligible throughout the campaign. Black carbon mass concentrations were higher inside the Indo-Gangetic Plain (2&amp;thinsp;µg/m<sup>3</sup> std) compared to outside (1&amp;thinsp;µg/m<sup>3</sup> std). Nitrate appeared to be controlled by thermodynamic processes, with increased mass concentration in conditions of lower temperature and higher relative humidity. Increased mass and number concentrations were observed inside the Indo-Gangetic Plain and the aerosol was more absorbing in this region, whereas outside the Indo-Gangetic Plain the aerosol was larger in size and more scattering in nature, suggesting greater dust presence especially in northwest India. The aerosol composition remained largely similar as the monsoon season progressed, but the total aerosol mass concentrations decreased by ~&amp;thinsp;50&amp;thinsp;% as the rainfall arrived; the pre-monsoon average total mass concentration was 30&amp;thinsp;µg/m<sup>3</sup> std compared to a monsoon average total mass concentration of 10&amp;ndash;20&amp;thinsp;µg/m<sup>3</sup> std. However, this mass concentration decrease was less noteworthy (~&amp;thinsp;20&amp;ndash;30&amp;thinsp;%) over the Indo-Gangetic Plain, likely due to the strength of emission sources in this region. Decreases occurred in coarse mode aerosol, with the fine mode fraction increasing with monsoon arrival. In the aerosol vertical profile, inside the Indo-Gangetic Plain during the pre-monsoon, organic aerosol and absorbing aerosol species dominated in the lower atmosphere (<&amp;thinsp;1.5&amp;thinsp;km) with sulphate, dust and other scattering aerosol species enhanced in an elevated aerosol layer above 1.5&amp;thinsp;km with maximum aerosol height ~&amp;thinsp;6&amp;thinsp;km. As the monsoon progressed into this region, the elevated aerosol layer diminished, the aerosol maximum height reduced to ~&amp;thinsp;2&amp;thinsp;km and the total mass concentrations decreased by ~&amp;thinsp;50&amp;thinsp;%. The dust and sulphate-dominated aerosol layer aloft was removed upon monsoon arrival, highlighted by an increase in fine mode fraction throughout the profile.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Atinderpal Singh ◽  
Prashant Rajput ◽  
Deepti Sharma ◽  
M. M. Sarin ◽  
Darshan Singh

We compare the mass concentrations of black carbon (BC) and elemental carbon (EC) from different emissions in the Indo-Gangetic Plain (IGP), using optical (Aethalometer; 880 nm) and thermooptical technique (EC-OC analyzer; 678 nm), respectively. The fractional contribution of BC mass concentration measured at two different channels (370 and 880 nm), OC/EC ratio, and non-sea-salt K+/EC ratios have been systematically monitored for representing the source characteristics of BC and EC in this study. The mass concentrations of BC varied from 8.5 to 19.6, 2.4 to 18.2, and 2.2 to 9.4 μg m−3during October-November (paddy-residue burning emission), December–March (emission from bio- and fossil-fuel combustion) and April-May (wheat-residue burning emission), respectively. In contrast, the mass concentrations of EC varied from 3.8 to 17.5, 2.3 to 8.9, and 2.0 to 8.8 μg m−3during these emissions, respectively. The BC/EC ratios conspicuously greater than 1.0 have been observed during paddy-residue burning emissions associated with high mass concentrations of EC, OC, and OC/EC ratio. The Ångström exponent (α) derived from Aethalometer data is approximately 1.5 for the postharvest agricultural-waste burning emissions, hitherto unknown for the IGP. The mass absorption efficiency (MAE) of BC and EC centers at ~1–4 m2 g−1and 2-3 m2 g−1during the entire study period in the IGP.


Author(s):  
Luka Pirker ◽  
Žiga Velkavrh ◽  
Agnese Osīte ◽  
Luka Drinovec ◽  
Griša Močnik ◽  
...  

AbstractFireworks pollute the local atmosphere with various air pollutants, which can pose a health hazard for the local population. Mass and number concentrations of aerosols were measured before, during, and after the 2016/2017 New Year event in Ljubljana, Slovenia. Our findings highlight the negative impact of fireworks on the environment. First, both the mass concentration of black carbon and the number of concentrations of nanoparticles between 80 and 150 nm increased shortly after midnight. Second, on Jan 1, 2017, there was an increase in the average daily mass concentrations of PM10 and PM2.5. Third, on this day, our devices also detected increased air pollution by Al, Ba, Sr, and Cu, that is, heavy metals usually associated with fireworks. Their Jan 1 mass concentrations were more than 10 times (and Sr more than 140 times) higher than their average daily mass concentrations from Jan 3 (when their mass concentrations returned to more normal levels) to Jan 31. We also found that pairwise correlations between nanoparticles, PM10, and black carbon are positive, strong, and statistically significant. Besides carbon, the chemical analysis of the collected particles revealed the presence of typical elements used in pyrotechnic devices and their significant positive correlation.


Sign in / Sign up

Export Citation Format

Share Document