scholarly journals Retrieval of an Ice Water Path over the Ocean from ISMAR and MARSS millimeter/submillimeter brightness temperatures

2017 ◽  
Author(s):  
Manfred Brath ◽  
Stuart Fox ◽  
Patrick Eriksson ◽  
R. Chawn Harlow ◽  
Martin Burgdorf ◽  
...  

Abstract. A neural network (NN)-based retrieval method to determine the snow ice water path (SIWP), liquid water path (LWP), and integrated water vapor (IWV) from millimeter and sub-millimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS), is presented. The NNs were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset free for SIWP > 0.01 kg/m2, LWP > 0.1 kg/m2 and IWV > 3 kg/m2. The MFE of SIWP decreases from 100 % at SIWP = 0.01 kg/m2 to 20 % at SIWP = 1 kg/m2 and the MFE of LWP from 100 % at LWP = 0.05 kg/m2 to 30 % at LWP = 1 kg/m2. The MFE of IWV for IWV > 3 kg/m2 is 5 % to 8 %. The SIWP retrieval strongly benefits from sub-millimeter channels, which reduce the MFE by a factor of two, compared to pure microwave retrievals. The IWV and the LWP retrieval also benefit from sub-millimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde 15 measurements shows an offset of 0.5 kg/m2 and an rms difference of 0.8 kg/m2, showing that the retrieval of IWV is highly effective even under cloudy conditions.

2018 ◽  
Vol 11 (1) ◽  
pp. 611-632 ◽  
Author(s):  
Manfred Brath ◽  
Stuart Fox ◽  
Patrick Eriksson ◽  
R. Chawn Harlow ◽  
Martin Burgdorf ◽  
...  

Abstract. A neural-network-based retrieval method to determine the snow ice water path (SIWP), liquid water path (LWP), and integrated water vapor (IWV) from millimeter and submillimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS), is presented. The neural networks were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset-free for SIWP  > 0.01 kg m−2, LWP  > 0.1 kg m−2, and IWV  > 3 kg m−2. The MFE of SIWP decreases from 100 % at SIWP  =  0.01 kg m−2 to 20 % at SIWP  =  1 kg m−2 and the MFE of LWP from 100 % at LWP  = 0.05 kg m−2 to 30 % at LWP  =  1 kg m−2. The MFE of IWV for IWV  > 3 kg m−2 is 5 to 8 %. The SIWP retrieval strongly benefits from submillimeter channels, which reduce the MFE by a factor of 2, compared to pure microwave retrievals. The IWV and the LWP retrievals also benefit from submillimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde measurements shows an offset of 0.5 kg m−2 and an RMS difference of 0.8 kg m−2, showing that the retrieval of IWV is highly effective even under cloudy conditions.


2015 ◽  
Vol 54 (8) ◽  
pp. 1809-1825 ◽  
Author(s):  
Yaodeng Chen ◽  
Hongli Wang ◽  
Jinzhong Min ◽  
Xiang-Yu Huang ◽  
Patrick Minnis ◽  
...  

AbstractAnalysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.


2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2018 ◽  
Vol 31 (21) ◽  
pp. 8705-8718 ◽  
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yongli He ◽  
Ying Han ◽  
...  

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a complex way by various atmospheric and surface properties, play a key role in controlling the global and regional energy budget. This study investigates the contributions of different atmospheric and surface properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition 4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface parameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal relationships vary among the different regions. Generally, the stepwise multiple linear regression models can capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the least important factor over land. These results verify the effects of atmospheric and surface factors on planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and determining the climate feedbacks.


2020 ◽  
Vol 20 (6) ◽  
pp. 3459-3481 ◽  
Author(s):  
Rosa Gierens ◽  
Stefan Kneifel ◽  
Matthew D. Shupe ◽  
Kerstin Ebell ◽  
Marion Maturilli ◽  
...  

Abstract. Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Ålesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.


2017 ◽  
Author(s):  
Yaniv Tubul ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Reuven H. Heiblum

Abstract. In this study, we explored the link between clouds’ integrated water content and surface rain rate (RR), focusing on deep convective clouds with iced tops. We used a 3-year (2006–2008) global dataset of cloud properties and precipitation rates retrieved from the MODerate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and the Tropical Rain Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA). Previous studies focusing on marine stratocumulus clouds showed a robust link between liquid water path and drizzle rates, in the form of a power law. Consistent with this, we show a quantified link between ice water path (IWP) and surface RR. To reduce the problem to one non-dimensional variable (the power law exponent, β), the IWP and RR were normalized by their local means. We examined the geographical variability of β, and found its mean value to be 1.03 ± 0.13 (1.04 ± 0.12) in the tropics and 1.19 ±  0.19 (1.26 ± 0.20) over the mid-latitudes, during June–August (December–February). The results over the tropical belt showed the best correlation (R2 > 0.9) and lowest standard deviation values, thus the estimations of RR based on IWP measurements for this area are expected to be the most reliable. Such a method offers an estimation of RR using IWP information measured by passive polar-orbiting sensors (such as MODIS). Moreover, it can aid in parameterizing rain properties in regional and global climate models. To enable use of this method, we provide global maps (for June–August) of the required parameters to calculate RR using IWP data.


2010 ◽  
Vol 67 (11) ◽  
pp. 3471-3487 ◽  
Author(s):  
Mark S. Kulie ◽  
Ralf Bennartz ◽  
Thomas J. Greenwald ◽  
Yong Chen ◽  
Fuzhong Weng

Abstract A combined active/passive modeling system that converts CloudSat observations to simulated microwave brightness temperatures (TB) is used to assess different ice particle models under precipitating conditions. Simulation results indicate that certain ice models (e.g., low-density spheres) produce excessive scattering and implausibly low simulated TBs for stratiform precipitation events owing to excessive derived ice water paths (IWPs), while other ice models produce unphysical TB depressions due to the combined effects of elevated derived IWP and excessive particle size distribution–averaged extinction. An ensemble of nonspherical ice particle models, however, consistently produces realistic results under most circumstances and adequately captures the radiative properties of frozen hydrometeors associated with precipitation—with the possible exception of very high IWP events. Large derived IWP uncertainties exceeding 60% are also noted and may indicate IWP retrieval accuracy deficiencies using high-frequency passive microwave observations. Simulated TB uncertainties due to the ice particle model ensemble members approach 9 (5) K at 89 (157) GHz for high ice water path conditions associated with snowfall and ∼2–3 (∼1–2) K under typical stratiform rain conditions. These uncertainties, however, display considerable variability owing to ice water path, precipitation type, satellite zenith angle, and frequency. Comparisons between 157-GHz simulations and observations under precipitating conditions produce low biases (<1.5 K) and high correlations, but lower-frequency channels display consistent negative biases of 3–4 K in precipitating regions. Sample error correlations and covariance matrices for select microwave frequencies also show strong functional relationships with ice water path and variability depending on precipitation type.


2014 ◽  
Vol 27 (9) ◽  
pp. 3114-3128 ◽  
Author(s):  
Zhiwei Heng ◽  
Yunfei Fu ◽  
Guosheng Liu ◽  
Renjun Zhou ◽  
Yu Wang ◽  
...  

Abstract In this paper, the global distribution of cloud water based on International Satellite Cloud Climatology Project (ISCCP), Moderate Resolution Imaging Spectroradiometer (MODIS), CloudSat Cloud Profiling Radar (CPR), European Center for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim), and Climate Forecast System Reanalysis (CFSR) datasets is presented, and the variability of cloud water from ISCCP, the Special Sensor Microwave Imager (SSM/I), ERA-Interim, and CFSR data over the time period of 1995 through 2009 is discussed. The results show noticeable differences in cloud water over land and over ocean, as well as latitudinal variations. Large values of cloud water are mainly distributed over the North Pacific and Atlantic Oceans, eastern ITCZ, regions off the west coast of the continents as well as tropical rain forest. Cloud water path (CWP), liquid water path (LWP), and ice water path (IWP) from these datasets show a relatively good agreement in distributions and zonal means. The results of trend analyzing show an increasing trend in CWP, and also a significant increasing trend of LWP can be found in the dataset of ISCCP, ERA-Interim, and CFSR over the ocean. Besides the long-term variation trend, rises of cloud water are found when temperature and water vapor exhibit a positive anomaly. EOF analyses are also applied to the anomalies of cloud water, the first dominate mode of CWP and IWP are similar, and a phase change can be found in the LWP time coefficient around 1999 in ISCCP and CFSR and around 2002 in ERA-Interim.


2006 ◽  
Vol 19 (13) ◽  
pp. 3180-3196 ◽  
Author(s):  
Walter A. Petersen ◽  
Rong Fu ◽  
Mingxuan Chen ◽  
Richard Blakeslee

Abstract This study focuses on modulation of lightning and convective vertical structure in the southern Amazon as a function of the South American monsoon V index (VI). Four wet seasons (December–March 1998–2001) of Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and Precipitation Radar (PR) data are examined together with two wet seasons (2000–01) of ground-based Brazilian Lightning Detection Network (BLDN) data. These observations are composited by VI phase (northerly or southerly) for a region of the southern Amazon and discussed relative to VI-regime environmental characteristics such as thermodynamic instability and wind shear. Relative comparisons of VI-regime convective properties reveal 1) slightly larger (20%–25%) PR pixel-mean rainfall during periods of northerly VI due to increased stratiform precipitation, 2) a factor of 2 or more increase in lightning flash density and the lightning diurnal cycle amplitude during periods of southerly VI, 3) a factor of 1.5–2 increase in the conditional probability of any PR radar reflectivity pixel exceeding 30 dBZ above the −10°C level during periods of southerly VI, and 4) an associated factor of 2 or more increase in southerly VI pixel-mean ice water path, with the ice water path being highly correlated to trends in lightning activity. During periods of southerly VI, convection occurs in an environment of increased thermodynamic instability, weak southeasterly low-level, and deep upper-tropospheric easterly wind shear. During periods of northerly VI, low-level westerly shear opposes stronger deep tropospheric easterly shear in a relatively moist environment of weaker thermodynamic instability, consistent with the occurrence of more widespread stratiform precipitation. The composite results of this study point to 1) regime differences in convective forcing that alter the prevalence of ice processes and, by inference, the vertical profile of latent heating and 2) the utility of lightning observations in delineating convective regime changes.


Sign in / Sign up

Export Citation Format

Share Document