scholarly journals COCAP: A carbon dioxide analyser for small unmanned aircraft systems

Author(s):  
Martin Kunz ◽  
Jost V. Lavric ◽  
Christoph Gerbig ◽  
Pieter Tans ◽  
Don Neff ◽  
...  

Abstract. Abstract Unmanned aerial systems (UAS) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by two orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 μmol mol−1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UAS. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UAS for atmospheric trace gas measurements.

2018 ◽  
Vol 11 (3) ◽  
pp. 1833-1849 ◽  
Author(s):  
Martin Kunz ◽  
Jost V. Lavric ◽  
Christoph Gerbig ◽  
Pieter Tans ◽  
Don Neff ◽  
...  

Abstract. Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol−1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.


2021 ◽  
Author(s):  
Sandeep Pimparkar ◽  
Aishwarya K. Dalvi ◽  
Adithyaraj Koodan ◽  
Siddhartha Maiti ◽  
Shaeel Al-Thabaiti ◽  
...  

Carbon dioxide (CO2) has emerged as one of the exciting cost-effective, abundant, and ready-to-use C1 sources in synthetic organic chemistry. However, the thermodynamic stability, as well as the kinetic inertness,...


Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 158
Author(s):  
Andrew Weinert

As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries between different UAS operations performing inspection missions. This method is based on a previously demonstrated technique that leverages open source geospatial information to generate representative unmanned aircraft trajectories. Using open source data and parallel processing techniques, we performed trillions of calculations to estimate the relative horizontal distance between geospatial points across sixteen locations.


2021 ◽  
Vol 11 (22) ◽  
pp. 10608
Author(s):  
Johnathan Burgess ◽  
Timothy Runnels ◽  
Joshua Johnsen ◽  
Joshua Drake ◽  
Kurt Rouser

This article compares direct turbine throttle control and active turbine throttle control for a turboelectric system; the featured turboprop is rated for 7 kW of shaft output power. The powerplant is intended for applications in unmanned aerial systems and requires a control system to produce different amounts of power for varying mission legs. The most straightforward control scheme explored is direct turbine control, which is characterized by the pilot controlling the throttle of the turbine engine. In contrast, active control is characterized by the turbine reacting to the power demanded by the electric motors or battery recharge cycle. The transient response to electric loads of a small-scale turboelectric system is essential in identifying and characterizing such a system’s safe operational parameters. This paper directly compares the turbogenerator’s transient behavior to varying electric loads and categorizes its dynamic response. A proportional, integral, and derivative (PID) control algorithm was utilized as an active throttle controller through a microcontroller with battery power augmentation for the turboelectric system. This controller manages the turbine’s throttle reactions in response to any electric load when applied or altered. By comparing the system’s response with and without the controller, the authors provide a method to safely minimize the response time of the active throttle controller for use in the real-world environment of unmanned aircraft.


Author(s):  
Christina M. Ivler ◽  
Kevin Truong ◽  
Declan Kerwin ◽  
Joel Otomize ◽  
Danielle Parmer ◽  
...  

Unmanned aerial systems, commonly known as drones, present new opportunities to perform autonomous tasks. Handling qualities requirements for manned vertical lift aircraft have been well defined and documented. The need to define handling qualities requirements for vertical take-off and landing (VTOL) unmanned aerial systems (UAS) to meet mission demands is of paramount importance for all potential operators and procurement agencies. One way to relate handling qualities specifications of large-scale manned and subscale unmanned aircraft is through Froude dynamic scaling. Froude dynamic scaling based on hub-to-hub distance has shown great promise in relating the natural frequencies of scaled multicopters. There have been recent efforts to develop a VTOL-UAS handling qualities standard by scaling mission task elements and rating their performance through a Trajectory, Tracking, and Aggression (TTA) score. This paper proposes a new performance standard adapted from the TTA scoring method, along with a modified Cooper–Harper scale as a VTOL-UAS handling qualities framework that is consistent with the spirit of Aeronautical Design Standard 33 (ADS-33). These newly proposed performance standards were then validated through simulation and flight testing on a small hexacopter UAS, flown at the University of Portland. A key outcome of this work is the flight verification of a key dynamic response metric, the disturbance rejection bandwidth, and associated validation of Froude scaling for predicted handling qualities metrics.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Chen ◽  
Weiliang Zeng ◽  
Guizhen Yu ◽  
Yunpeng Wang

Conflict analysis using surrogate safety measures (SSMs) has become an efficient approach to investigate safety issues. The state-of-the-art studies largely resort to video images taken from high buildings. However, it suffers from heavy labor work, high cost of maintenance, and even security restrictions. Data collection and processing remains a common challenge to traffic conflict analysis. Unmanned Aerial Systems (UASs) or Unmanned Aerial Vehicles (UAVs), known for easy maneuvering, outstanding flexibility, and low costs, are considered to be a novel aerial sensor. By taking full advantage of the bird’s eye view offered by UAV, this study, as a pioneer work, applied UAV videos for surrogate safety analysis of pedestrian-vehicle conflicts at one urban intersection in Beijing, China. Aerial video sequences for a period of one hour were analyzed. The detection and tracking systems for vehicle and pedestrian trajectory data extraction were developed, respectively. Two SSMs, that is, Postencroachment Time (PET) and Relative Time to Collision (RTTC), were employed to represent how spatially and temporally close the pedestrian-vehicle conflict is to a collision. The results of analysis showed a high exposure of pedestrians to traffic conflict both inside and outside the crosswalk and relatively risking behavior of right-turn vehicles around the corner. The findings demonstrate that UAV can support intersection safety analysis in an accurate and cost-effective way.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6051
Author(s):  
Piyush Garg ◽  
Roya Nasimi ◽  
Ali Ozdagli ◽  
Su Zhang ◽  
David Dennis Lee Mascarenas ◽  
...  

Measurement of bridge displacements is important for ensuring the safe operation of railway bridges. Traditionally, contact sensors such as Linear Variable Displacement Transducers (LVDT) and accelerometers have been used to measure the displacement of the railway bridges. However, these sensors need significant effort in installation and maintenance. Therefore, railroad management agencies are interested in new means to measure bridge displacements. This research focuses on mounting Laser Doppler Vibrometer (LDV) on an Unmanned Aerial System (UAS) to enable contact-free transverse dynamic displacement of railroad bridges. Researchers conducted three field tests by flying the Unmanned Aerial Systems Laser Doppler Vibrometer (UAS-LDV) 1.5 m away from the ground and measured the displacement of a moving target at various distances. The accuracy of the UAS-LDV measurements was compared to the Linear Variable Differential Transducer (LVDT) measurements. The results of the three field tests showed that the proposed system could measure non-contact, reference-free dynamic displacement with an average peak and root mean square (RMS) error for the three experiments of 10% and 8% compared to LVDT, respectively. Such errors are acceptable for field measurements in railroads, as the interest prior to bridge monitoring implementation of a new approach is to demonstrate similar success for different flights, as reported in the three results. This study also identified barriers for industrial adoption of this technology and proposed operational development practices for both technical and cost-effective implementation.


Author(s):  
John H. Mott ◽  
Zachary A. Marshall ◽  
Mark A. Vandehey ◽  
Mike May ◽  
Darcy M. Bullock

Versatile unmanned aerial system (UAS) platforms have grown significantly in popularity by virtue of their low cost relative to manned aircraft, high performance, and operational simplicity. While the Federal Aviation Administration (FAA) currently regulates the operating altitudes, speeds, weights, pilot qualifications, and locations of drones, a lack of capacity and technology prohibits sufficient enforcement of these restrictions. To assess the frequency and severity of manned and unmanned aircraft separation incidents, and to examine the emerging sensor technology available to facilitate such assessment, flight operations in controlled airspace around Orlando Melbourne International Airport (KMLB) were monitored. One sensor system deployed at KMLB reported UAS locations, altitudes, and flight durations, while a second system reported manned aircraft positions, altitudes, and timestamps using ADS-B signals. Evaluation of flight operations data in the vicinity of KMLB revealed eight potential drone incursions over a 2-week period. Aircraft flight paths were retroactively tracked to map these unmanned and manned aerial conflicts; aircraft identification information was also researched to contextualize the incidents. The frequency and magnitude of identified events suggest the need for additional research to further explore the problem scope and potential solutions.


Author(s):  
D. A. Ishchenco ◽  
V. A. Kyryliuk ◽  
S. D. Ishchenco ◽  
L. M. Maryshchuk

The work shows the relevance of the problem of countering reconnaissance and strike unmanned aircraft systems and the need to improve the scientific and methodological support of its solution according to a certain corresponding paradigm. In the work as a paradigm of countering unmanned aerial systems, it is proposed to consider a conceptual theoretical and methodological model of combating unmanned aerial vehicles, which currently provides opportunities for identifying the problems of developing forces and means of countering unmanned aerial systems. The developed paradigm of counteraction can be an element of scientific and methodological support, contributes to the solution of the problem of the complex use of forces and means of counteraction to reconnaissance and strike unmanned aircraft systems in order to acquire the capabilities of troops (forces) to perform tasks as intended in the conditions of the use of unmanned vehicles. The recognition of such a paradigm by specialists determines that their activities are based on the accepted model of countering unmanned aircraft systems, using the same rules and standards established in the industry. The generality and consistency of approaches that they provide are prerequisites for ensuring the required scientific level of a certain direction of research. The proposed approach outlines the tasks, content, components, principles of assessment of means of counteraction to unmanned aerial vehicles by contributing to the effectiveness of the system of protection of the object from reconnaissance and strike (shock) systems of the enemy, which systematizes knowledge in the subject area. problems of modern armed struggle. The prospect of further research is to clarify the mathematical calculations in accordance with the characteristics of troops (forces), military facility, protection system against reconnaissance and strike (strike) unmanned aerial vehicles of the enemy and samples of military equipment that are part of it.


2016 ◽  
Vol 8 (1) ◽  
pp. 115-126 ◽  
Author(s):  
John J. Cassano ◽  
Mark W. Seefeldt ◽  
Scott Palo ◽  
Shelley L. Knuth ◽  
Alice C. Bradley ◽  
...  

Abstract. In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air–sea ice–ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).


Sign in / Sign up

Export Citation Format

Share Document