scholarly journals Cloud top pressure retrieval with DSCOVR-EPIC oxygen A and B bands observation

2020 ◽  
Author(s):  
Bangsheng Yin ◽  
Qilong Min ◽  
Emily Morgan ◽  
Yuekui Yang ◽  
Alexander Marshak ◽  
...  

Abstract. An analytic transfer model for Earth Polychromatic Imaging Camera (EPIC) observation was proposed to retrieve the cloud top pressure (CTP) with considering in-cloud photon penetration. In this model, an analytic equation was developed to represent the reflection at top of atmosphere (TOA) from above cloud, in-cloud and below-cloud. The coefficients of this analytic equation can be derived from a series of EPIC simulations under different atmospheric conditions using a non-linear regression algorithm. With estimated cloud pressure thickness, the CTP can be retrieved from EPIC observation data by solving the analytic equation. To simulate the EPIC measurements, a program package using the double-k approach was developed, which can calculate high-accuracy results with a one-hundred-fold time reduction. During the retrieval processes, two kinds of retrieval results, i.e., baseline CTP and retrieved CTP, are provided. The baseline CTP is derived without considering in-cloud photon penetration, and the retrieved CTP is derived by solving the analytic equation, taking into consideration the in-cloud and below-cloud interactions. The retrieved CTP for the oxygen A and B bands are smaller than their related baseline CTP. At the same time, both baseline CTP and retrieved CTP at the oxygen B-band are obviously larger than those at the oxygen A-band. Compared to the difference of baseline CTP between the B-band and A-band, the difference of retrieved CTP between these two bands is generally reduced.

2020 ◽  
Vol 13 (10) ◽  
pp. 5259-5275
Author(s):  
Bangsheng Yin ◽  
Qilong Min ◽  
Emily Morgan ◽  
Yuekui Yang ◽  
Alexander Marshak ◽  
...  

Abstract. An analytic transfer inverse model for Earth Polychromatic Imaging Camera (EPIC) observations is proposed to retrieve the cloud-top pressure (CTP) with the consideration of in-cloud photon penetration. In this model, an analytic equation was developed to represent the reflection at the top of the atmosphere from above cloud, in cloud, and below cloud. The coefficients of this analytic equation can be derived from a series of EPIC simulations under different atmospheric conditions using a nonlinear regression algorithm. With estimated cloud pressure thickness, the CTP can be retrieved from EPIC observation data by solving the analytic equation. To simulate the EPIC measurements, a program package using the double-k approach was developed. Compared to line-by-line calculation, this approach can calculate high-accuracy results with a 100-fold computation time reduction. During the retrieval processes, two kinds of retrieval results, i.e., baseline CTP and retrieved CTP, are provided. The baseline CTP is derived without considering in-cloud photon penetration, and the retrieved CTP is derived by solving the analytic equation, taking into consideration in-cloud and below-cloud interactions. The retrieved CTPs for the oxygen A and B bands are smaller than their related baseline CTP. At the same time, both baseline CTP and retrieved CTP at the oxygen B band are larger than those at the oxygen A band. Compared to the difference in baseline CTP between the B band and A band, the difference in retrieved CTP between these two bands is generally reduced. Out of around 10 000 cases, in retrieved CTP between the A and B bands we found an average bias of 93 mb with a standard deviation of 81 mb. The cloud layer top pressure from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements is used for validation. Under single-layer cloud situations, the retrieved CTPs for the oxygen A band agree well with the CTPs from CALIPSO, the mean difference of which within 5 mb in the case study. Under multiple-layer cloud situations, the CTPs derived from EPIC measurements may be larger than the CTPs of high-level thin clouds due to the effect of photon penetration.


2021 ◽  
pp. 112067212110237
Author(s):  
Ari Leshno ◽  
Ori Stern ◽  
Yaniv Barkana ◽  
Noa Kapelushnik ◽  
Reut Singer ◽  
...  

Purpose: Accumulating evidence suggests that neuroinflammation and immune response are part of the sequence of pathological events leading to optic nerve damage in glaucoma. Changes in tissue temperature due to inflammation can be measured by thermographic imaging. We investigated the ocular surface temperature (OST) profile of glaucomatous eyes to better understand the pathophysiology of these conditions. Methods: Subjects diagnosed with glaucoma (primary open angle glaucoma [POAG] or pseudo exfoliation glaucoma [PXFG]) treated at the Sam Rothberg Glaucoma Center (11/2019–11/2020.) were recruited. Healthy subjects with no ocular disease served as controls. The Therm-App thermal imaging camera was used for OST acquisition. Room and body temperatures were recorded, and the mean temperatures of the medial cantus, lateral cantus, and cornea were calculated with image processing software. Results: Thermographic images were obtained from 52 subjects (52 eyes: 25 POAG and 27 PXFG) and 66 controls (66 eyes). Eyes with glaucoma had a significantly higher OST compared to controls (mean 0.9 ± 0.3°C, p < 0.005). The difference between the two groups remained significant after adjustment for age, sex, intraocular pressure (IOP) and room and body temperatures. Lens status and topical IOP-lowering medication did not significantly affect OST. A subgroup analysis revealed that the OST was higher among eyes with POAG compared to eyes with PXFG, but not significantly. Conclusions: Differences in the OST between glaucomatous and normal eyes strengthens current thinking that inflammation affects the pathophysiology of glaucoma. Longitudinal studies are warranted to establish the prognostic value of thermographic evaluations in these patients.


2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Haklim Choi ◽  
Xiong Liu ◽  
Gonzalo Gonzalez Abad ◽  
Jongjin Seo ◽  
Kwang-Mog Lee ◽  
...  

Clouds act as a major reflector that changes the amount of sunlight reflected to space. Change in radiance intensity due to the presence of clouds interrupts the retrieval of trace gas or aerosol properties from satellite data. In this paper, we developed a fast and robust algorithm, named the fast cloud retrieval algorithm, using a triplet of wavelengths (469, 477, and 485 nm) of the O2–O2 absorption band around 477 nm (CLDTO4) to derive the cloud information such as cloud top pressure (CTP) and cloud fraction (CF) for the Geostationary Environment Monitoring Spectrometer (GEMS). The novel algorithm is based on the fact that the difference in the optical path through which light passes with regard to the altitude of clouds causes a change in radiance due to the absorption of O2–O2 at the three selected wavelengths. To reduce the time required for algorithm calculations, the look-up table (LUT) method was applied. The LUT was pre-constructed for various conditions of geometry using Vectorized Linearized Discrete Ordinate Radiative Transfer (VLIDORT) to consider the polarization of the scattered light. The GEMS was launched in February 2020, but the observed data of GEMS have not yet been widely released. To evaluate the performance of the algorithm, the retrieved CTP and CF using observational data from the Global Ozone Monitoring Experiment-2 (GOME-2), which cover the spectral range of GEMS, were compared with the results of the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) algorithm, which is based on the O2 A-band. There was good agreement between the results, despite small discrepancies for low clouds.


Author(s):  
Giulia Seghezzo ◽  
Yvonne Van Hoecke ◽  
Laura James ◽  
Donna Davoren ◽  
Elizabeth Williamson ◽  
...  

Abstract Background The Preclinical Alzheimer Cognitive Composite (PACC) is a composite score which can detect the first signs of cognitive impairment, which can be of importance for research and clinical practice. It is designed to be administered in person; however, in-person assessments are costly, and are difficult during the current COVID-19 pandemic. Objective To assess the feasibility of performing the PACC assessment with videoconferencing, and to compare the validity of this remote PACC with the in-person PACC obtained previously. Methods Participants from the HEalth and Ageing Data IN the Game of football (HEADING) Study who had already undergone an in-person assessment were re-contacted and re-assessed remotely. The correlation between the two PACC scores was estimated. The difference between the two PACC scores was calculated and used in multiple linear regression to assess which variables were associated with a difference in PACC scores. Findings Of the 43 participants who were invited to this external study, 28 were re-assessed. The median duration in days between the in-person and the remote assessments was 236.5 days (7.9 months) (IQR 62.5). There was a strong positive correlation between the two assessments for the PACC score, with a Pearson correlation coefficient of 0·82 (95% CI 0·66, 0·98). The multiple linear regression found that the only predictor of the PACC difference was the time between assessments. Interpretation This study provides evidence on the feasibility of performing cognitive tests online, with the PACC tests being successfully administered through videoconferencing. This is relevant, especially during times when face-to-face assessments cannot be performed.


2021 ◽  
Vol 13 (11) ◽  
pp. 2061
Author(s):  
Mikhail V. Belikovich ◽  
Mikhail Yu. Kulikov ◽  
Dmitry S. Makarov ◽  
Natalya K. Skalyga ◽  
Vitaly G. Ryskin ◽  
...  

Ground-based microwave radiometers are increasingly used in operational meteorology and nowcasting. These instruments continuously measure the spectra of downwelling atmospheric radiation in the range 20–60 GHz used for the retrieval of tropospheric temperature and water vapor profiles. Spectroscopic uncertainty is an important part of the retrieval error budget, as it leads to systematic bias. In this study, we analyze the difference between observed and simulated microwave spectra obtained from more than four years of microwave and radiosonde observations over Nizhny Novgorod (56.2° N, 44° E). We focus on zenith-measured and elevation-scanning data in clear-sky conditions. The simulated spectra are calculated by a radiative transfer model with the use of radiosonde profiles and different absorption models, corresponding to the latest spectroscopy research. In the case of zenith-measurements, we found a systematic bias (up to ~2 K) of simulated spectra at 51–54 GHz. The sign of bias depends on the absorption model. A thorough investigation of the error budget points to a spectroscopic nature of the observed differences. The dependence of the results on the elevation angle and absorption model can be explained by the basic properties of radiative transfer and by cloud contamination at elevation angles.


2021 ◽  
pp. 174498712110161
Author(s):  
Ann-Marie Cannaby ◽  
Vanda Carter ◽  
Thomas Hoe ◽  
Stephenson Strobel ◽  
Elena Ashtari Tafti ◽  
...  

Background The association between the nurse-to-patient ratio and patient outcomes has been extensively investigated. Real time location systems have the potential capability of measuring the actual amount of bedside contact patients receive. Aims This study aimed to determine the feasibility and accuracy of real time location systems as a measure of the amount of contact time that nurses spent in the patients’ bed space. Methods An exploratory, observational, feasibility study was designed to compare the accuracy of data collection between manual observation performed by a researcher and real time location systems data capture capability. Four nurses participated in the study, which took place in 2019 on two hospital wards. They were observed by a researcher while carrying out their work activities for a total of 230 minutes. The amount of time the nurses spent in the patients’ bed space was recorded in 10-minute blocks of time and the real time location systems data were extracted for the same nurse at the time of observation. Data were then analysed for the level of agreement between the observed and the real time location systems measured data, descriptively and graphically using a kernel density and a scatter plot. Results The difference (in minutes) between researcher observed and real time location systems measured data for the 23, 10-minute observation blocks ranged from zero (complete agreement) to 5 minutes. The mean difference between the researcher observed and real time location systems time in the patients’ bed space was one minute (10% of the time). On average, real time location systems measured time in the bed space was longer than the researcher observed time. Conclusions There were good levels of agreement between researcher observation and real time location systems data of the time nurses spend at the bedside. This study confirms that it is feasible to use real time location systems as an accurate measure of the amount of time nurses spend at the patients’ bedside.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1057-1068 ◽  
Author(s):  
Joanne Williams ◽  
Maialen Irazoqui Apecechea ◽  
Andrew Saulter ◽  
Kevin J. Horsburgh

Abstract. Tide predictions based on tide-gauge observations are not just the astronomical tides; they also contain radiational tides – periodic sea-level changes due to atmospheric conditions and solar forcing. This poses a problem of double-counting for operational forecasts of total water level during storm surges. In some surge forecasting, a regional model is run in two modes: tide only, with astronomic forcing alone; and tide and surge, forced additionally by surface winds and pressure. The surge residual is defined to be the difference between these configurations and is added to the local harmonic predictions from gauges. Here we use the Global Tide and Surge Model (GTSM) based on Delft-FM to investigate this in the UK and elsewhere, quantifying the weather-related tides that may be double-counted in operational forecasts. We show that the global S2 atmospheric tide is captured by the tide-and-surge model and observe changes in other major constituents, including M2. The Lowest and Highest Astronomical Tide levels, used in navigation datums and design heights, are derived from tide predictions based on observations. We use our findings on radiational tides to quantify the extent to which these levels may contain weather-related components.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1256
Author(s):  
Jan El Kassar ◽  
Cintia Carbajal Henken ◽  
Rene Preusker ◽  
Jürgen Fischer

A new algorithm for the retrieval of day-time total column water vapour (TCWV) from measurements of a MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager) instrument is presented. The retrieval is based on a forward operator, at the core of which lies Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV). This forward model relates TCWV and surface temperature to brightness temperatures in the split window at 11 and 12µm with the use of a first guess for temperature and humidity profiles from the ERA5 reanalysis. The forward model is then embedded in a full Optimal Estimation (OE) method, which yields pixel by pixel uncertainty estimates and performance indicators. The algorithm is applicable to any instrument which features the split window configuration, given a first guess for atmospheric conditions (i.e., from NWP) and an estimate of surface emissivity at 11 µm. The algorithm was developed within the framework of RealPEP (Near-Realtime Quantitative Precipitation Estimation and Prediction) in which the advancement of the estimation and nowcasting of extreme precipitation and flooding in Germany are studied. Thus, processing and validation has been limited to the German domain. Three independent ground-based TCWV observation data sets were used as reference, i.e., AERONET (Aerosol Robotic Network), GNSS Germany (Global Navigation Satellite System) and measurements from two MWR (Microwave Radiometer) sites. The validation concludes with good agreement, with absolute biases between 0.11 and 2.85 kg/m2, root mean square deviations (rmsds) between 1.63 and 3.24 kg/m2 and Pearson correlation coefficients ranging from 0.96 to 0.98. The retrievals uncertainty estimates were evaluated against AERONET. The comparison suggests that, in sum, uncertainties are estimated well, while still some error sources seem to be over- and underestimated. In limited case studies it could be shown that SEVIRI TCWV is capable to both display large scale variabilities in water vapour fields and reproduce the daily course of water vapour exposed by ground-based observations.


2020 ◽  
Vol 6 (3) ◽  
pp. 72-80 ◽  
Author(s):  
Kamil Yusupov ◽  
John Mathews ◽  
Takashi Maruyama ◽  
Adel Akchurin ◽  
Maksim Tolstikov ◽  
...  

In this paper, we discuss the main types of quasiperiodic variations in amplitudes of a reflected signal during vertical sounding of the ionosphere at middle latitudes. The initial experimental data is vertical sounding ionograms obtained by the Cyclone ionosonde. The ionosonde is located in Kazan (59°, 49°) and in standard mode allows us to receive one ionogram per minute. In the analysis, methods are used to visualize a large flow of ionograms in the form of final summary maps of the state of the ionosphere (A-, H-, As-maps). We give typical examples of quasiperiodic variations in amplitudes of a reflected signal in ionograms and on A-maps for various types of multipath beatings (polarization and due to signal scattering by ionospheric irregularities). Frequency properties of such beatings are used to estimate the difference in virtual reflection heights between modes of different polarizations with high accuracy, which makes it possible to refine the form of the electron density profile of the lower ionosphere. We have detected a phenomenon rare for the mid-latitude Es layer — beatings of two O modes with different virtual reflection heights. We also present features of quasiperiodic variations in amplitudes of a reflected signal on traces of the transient Es layer. We study possible causes of the appearance of such beatings.


Sign in / Sign up

Export Citation Format

Share Document