scholarly journals Spatial distribution and seasonal variability in atmospheric ammonia measured from ground-based FTIR observations at Hefei, China

2020 ◽  
Author(s):  
Wei Wang ◽  
Cheng Liu ◽  
Lieven Clarisse ◽  
Martin Van Damme ◽  
Pierre-François Coheur ◽  
...  

Abstract. Atmospheric ammonia (NH3) plays an important role in the formation of fine particulate matter, leading to severe environmental degradation and human health issues. In this work, ground-based FTIR observations are used to obtain the total columns and vertical profiles of atmospheric NH3 at a measurement site in Hefei, China, from December 2016 to November 2018. The spatial distribution and temporal variation, seasonal trend, emission sources and potential sources of NH3 are analyzed. The time series of ammonia columns show that FTIR observations captured the seasonal cycle of NH3 over the two years of measurement, with a 22.14 % yr-1 annual increase rate over the Hefei site. We used IASI satellite data to compare with the FTIR data, and the correlation coefficients (R) between the two datasets are 0.86 and 0.78 for IASI-A and IASI-B, respectively. The results demonstrate the IASI data are in broad agreement with our FTIR data. To examine the contribution of traffic to NH3 columns, we analyze the relationship of NH3 columns with CO surface concentrations. NH3 columns show high correlation (R = 0.77) with CO concentrations in summer, indicating that the elevated NH3 columns are partly caused by urban emissions from vehicles. Further, high correlation of NH3 columns with air temperature is obvious from their diurnal variation during the observation period. In addition, the clear correlation between NH3 columns and air temperature in spring and autumn over Hefei, suggests that agriculture was indeed the main source of ammonia in spring and autumn. Furthermore, the back trajectories of air masses calculated by the HYSPLIT model confirmed that agriculture was the dominant source of ammonia in spring, autumn and winter, while urban anthropogenic emissions contributed to the high level of NH3 in summer over the Hefei site. The potential source areas influencing the NH3 columns were distributed in the local area of Hefei, the northern part of Anhui province, as well as Shangdong, Jiangsu and Henan provinces. This study helps to identify the emission sources and potential sources that contribute to NH3 columns over Hefei, a highly populated and polluted area. This is the first time that ground-based FTIR remote sensing of NH3 columns and comparison with satellite data are reported in China.

2013 ◽  
Vol 13 (7) ◽  
pp. 19237-19289
Author(s):  
J. A. Adame ◽  
M. Martínez ◽  
M. Sorribas ◽  
P. J. Hidalgo ◽  
H. Harder ◽  
...  

Abstract. The DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign was carried out from 21 November to 8 December 2008 at El Arenosillo station (SW of Spain) in a coastal-rural background environment. The main weather conditions are analysed using local meteorological variables, meteorological soundings, synoptic maps, as well as back trajectories of the air masses using the HYSPLIT model and high spatial resolution of meteorological fields. Measurements of the main meteorological parameters were collected both on the surface and on a tall tower. A detailed land use analysis was performed on a 80 km scale showing the main vegetation types. Also the main anthropogenic atmospheric emission sources both industrial-urban from Huelva and from the urban Seville area are shown. A study to identify air mass origins and their variation with height was carried out. In this intensive campaign air masses coming from different areas with different emission sources were observed: from the NW, with a highly industrial-urban character; continental flows from northerly directions; from the NE, with pathway, first, over the Seville metropolitan area and, then, over the Doñana National Park; and maritime air masses coming from the Atlantic Ocean. To study the chemistry in the four atmospheric scenarios identified, gas phase measurements of primary and secondary species such as ozone, NO, NO2 and SO2, biogenic and anthropogenic VOCs like benzene and isoprene, as well as total particles concentration and chemical composition of the aerosols are compared and discussed. The highest levels for total particle concentration, NO, NO2, SO2, benzene, PM10, PM2.5 and chemical elements such as As or Cu were found under flows associated with industrial-urban emissions from the Huelva-Portugal sector which are transported to the site before significant removal by chemical or deposition mechanism can occur. The air masses from the north were affected mainly by crustal elements and biogenic sources, the latter being exemplified by the biogenic species such as isoprene, particularly in the first part of the campaign. The urban air from the Seville area, before arriving at El Arenosillo traverses the Doñana National Park and therefore, was affected by industrial-urban and biogenic emissions. This air can transport low levels of NOx, total particle concentration and SO2 with aged ozone and some isoprene. Marine air masses from the Atlantic Ocean influence El Arenosillo frequently. Under these conditions the lowest levels of almost all the species were measured with the exception of ozone levels associated to long-range transport.


Chemosphere ◽  
2016 ◽  
Vol 145 ◽  
pp. 495-507 ◽  
Author(s):  
Elio Padoan ◽  
Mery Malandrino ◽  
Agnese Giacomino ◽  
Mauro M. Grosa ◽  
Francesco Lollobrigida ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
D. G. Kaskaoutis ◽  
P. G. Kosmopoulos ◽  
H. D. Kambezidis ◽  
P. T. Nastos

Aerosol optical depth at 550 nm () and fine-mode (FM) fraction data from Terra-MODIS were obtained over the Greater Athens Area covering the period February 2000–December 2005. Based on both and FM values three main aerosol types have been discriminated corresponding to urban/industrial aerosols, clean maritime conditions, and coarse-mode, probably desert dust, particles. Five main sectors were identified for the classification of the air-mass trajectories, which were further used in the analysis of the ( and FM data for the three aerosol types). The HYSPLIT model was used to compute back trajectories at three altitudes to investigate the relation between -FM and wind sector depending on the altitude. The accumulation of local pollution is favored in spring and corresponds to air masses at lower altitudes originating from Eastern Europe and the Balkan. Clean maritime conditions are rare over Athens, limited in the winter season and associated with air masses from the Western or Northwestern sector. The coarse-mode particles origin seems to be more complicated proportionally to the season. Thus, in summer the Northern sector dominates, while in the other seasons, and especially in spring, the air masses belong to the Southern sector enriched with Saharan dust aerosols.


2010 ◽  
Vol 7 (4) ◽  
pp. 6179-6205
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i) satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact and (ii) an operational physically based distributed (25 m×25 m) hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ETact are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ETact is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related). Secondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.


2011 ◽  
Vol 26 (2) ◽  
pp. 236-242 ◽  
Author(s):  
A. F. Stein ◽  
Y. Wang ◽  
J. D. de la Rosa ◽  
A. M. Sanchez de la Campa ◽  
Nuria Castell ◽  
...  

Abstract The Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model has been applied to calculate the spatial and temporal distributions of dust originating from North Africa. The model has been configured to forecast hourly particulate matter ≤10 μm (PM10) dust concentrations focusing on the impacts over the southern Iberian Peninsula. Two full years (2008 and 2009) have been simulated and compared against surface background measurement sites. A statistical analysis using discrete and categorical evaluations is presented. The model is capable of simulating the occurrence of Saharan dust episodes as observed at the measurement stations and captures the generally higher levels observed in eastern Andalusia, Spain, with respect to the western Andalusia station. But the simulation tends to underpredict the magnitude of the dust concentration peaks. The model has also been qualitatively compared with satellite data, showing generally good agreement in the spatial distribution of the dust column.


Sign in / Sign up

Export Citation Format

Share Document