scholarly journals Intercomparison and Evaluation of Ground- and Satellite-Based Stratospheric Ozone and Temperature profiles above Observatoire Haute Provence during the Lidar Validation NDACC Experiment (LAVANDE)

2020 ◽  
Author(s):  
Robin Wing ◽  
Wolfgang Steinbrecht ◽  
Sophie Godin-Beekmann ◽  
Thomas J. McGee ◽  
John T. Sullivan ◽  
...  

Abstract. A two-part inter-comparison campaign was conducted at L'Observatoire de Haute Provence (OHP) for the validation of lidar ozone and temperature profiles using the mobile NASA Stratospheric Ozone Lidar (NASA STROZ), satellite overpasses from the Microwave Limb Sounder (MLS), the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), meteorological radiosondes launched from Nimes, and locally launched ozonesondes. All the data were submitted and compared blind, before the group could see results from the other instruments. There was good agreement between all ozone measurements between 20 and 40 km with differences of generally less than 5 % throughout this region. Below 20 km SABER and MLS measured significantly more ozone than the lidars or ozone sondes. Temperatures for all lidars were in good agreement between 30 and 60 km with differences on the order of ±1 to 3 K. Below 30 km, the OHP lidar operating at 532 nm has a significant cool bias due to contamination by aerosols. Systematic, altitude varying bias up to ±5 K compared to the lidars was found for MLS at many altitudes. SABER temperature profiles are generally closer to the lidar profiles, with up 3 K negative bias near 50 km. Uncertainty estimates for ozone and temperature appear to be realistic for nearly all systems. However, it does seem that the very low estimated uncertainties of lidars between 30 and 50 km, between 0.1 and 1 K, are not achieved during LidAr VAlidation NDacc Experiment (LAVANDE). These estimates might have to be increased to 1 to 2 K.

2020 ◽  
Vol 13 (10) ◽  
pp. 5621-5642
Author(s):  
Robin Wing ◽  
Wolfgang Steinbrecht ◽  
Sophie Godin-Beekmann ◽  
Thomas J. McGee ◽  
John T. Sullivan ◽  
...  

Abstract. A two-part intercomparison campaign was conducted at Observatoire de Haute-Provence (OHP) for the validation of lidar ozone and temperature profiles using the mobile NASA Stratospheric Ozone Lidar (NASA STROZ), satellite overpasses from the Microwave Limb Sounder (MLS), the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), meteorological radiosondes launched from Nîmes, and locally launched ozonesondes. All the data were submitted and compared “blind”, before the group could see results from the other instruments. There was good agreement between all ozone measurements between 20 and 40 km, with differences of generally less than 5 % throughout this region. Below 20 km, SABER and MLS measured significantly more ozone than the lidars or ozonesondes. Temperatures for all lidars were in good agreement between 30 and 60 km, with differences on the order of ±1 to 3 K. Below 30 km, the OHP lidar operating at 532 nm has a significant cool bias due to contamination by aerosols. Systematic, altitude-varying bias up to ±5 K compared to the lidars was found for MLS at many altitudes. SABER temperature profiles are generally closer to the lidar profiles, with up 3 K negative bias near 50 km. Total uncertainty estimates for ozone and temperature appear to be realistic for nearly all systems. However, it does seem that the very low estimated uncertainties of lidars between 30 and 50 km, between 0.1 and 1 K, are not achieved during Lidar Validation Network for the Detection of Atmospheric Composition Change (NDACC) Experiment (LAVANDE). These estimates might have to be increased to 1 to 2 K.


2020 ◽  
Author(s):  
Robin Wing ◽  
Wolfgang Steinbrecht ◽  
Sophie Godin-Beekmann ◽  
Thomas J. McGee ◽  
John Sullivan ◽  
...  

<p>Recent intercomparison exercises have been conducted at two European NDACC lidar sites.  The mobile NASA Stratospheric Ozone Lidar (NASA STROZ) was present for a two part validation campaign at the Observatoire de Haute-Provence (43.93 N, 5.71 E) in July 2017 and March 2018 and at the Hohenpeißenberg Meteorological Observatory (47.80 N, 11.00 E) in March 2019.  Lidar profiles of ozone and temperature were compared with local radiosondes and ozonesondes; satellite profiles from local overpasses of Sounding of the Atmosphere by Broadband Emission Radiometry instrument (SABER) and Microwave Limb Sounder (MLS); and NCEP reanalysis. There is overall good agreement between all the lidar instruments and the balloon measurements, particularly in the reproduction of small scale features, during all three phases of the European campaign.  </p><p>We have conducted a detailed correlational study of all instruments involved in the campaign and have rigorously evaluated the uncertainty budget of each instrument.  We will discuss the strengths and drawbacks of different statistical techniques for evaluating coincident ozone and temperature measurements and compare how our estimates of instrument uncertainty compare to the observed variance in the data.</p>


2021 ◽  
Vol 14 (5) ◽  
pp. 3773-3794
Author(s):  
Robin Wing ◽  
Sophie Godin-Beekmann ◽  
Wolfgang Steinbrecht ◽  
Thomas J. McGee ◽  
John T. Sullivan ◽  
...  

Abstract. A newly upgraded German Weather Service (DWD) ozone and temperature lidar (HOH) located at the Hohenpeißenberg Meteorological Observatory (47.8∘ N, 11.0∘ E) has been evaluated through comparison with the travelling standard lidar operated by NASA's Goddard Space Flight Center (NASA GSFC Stratospheric Ozone (STROZ) lidar), satellite overpasses from the Microwave Limb Sounder (MLS), the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), the Ozone Mapping and Profiler Suite (OMPS), meteorological radiosondes launched from Munich (65 km northeast), and locally launched ozonesondes. The “blind” evaluation was conducted under the framework of the Network for the Detection of Atmospheric Composition Change (NDACC) using 10 clear nights of measurements in 2018 and 2019. The campaign, referred to as the Hohenpeißenberg Ozone Profiling Study (HOPS), was conducted within the larger context of NDACC validation activities for European lidar stations. There was good agreement between all ozone lidar measurements in the range of 15 to 41 km with relative differences between co-located ozone profiles of less than ±10 %. Differences in the measured ozone number densities between the lidars and the locally launched ozone sondes were also generally less than 5 % below 30 km. The satellite ozone profiles demonstrated some differences with respect to the ground-based lidars which are due to sampling differences and geophysical variation. Both the original and new DWD lidars continue to meet the NDACC standard for lidar ozone profiles by exceeding 3 % accuracy between 16.5 and 43 km. Temperature differences for all instruments were less than ±5 K below 60 km, with larger differences present in the lidar–satellite comparisons above this region. Temperature differences between the DWD lidars met the NDACC accuracy requirements of ±1 K between 17 and 78 km. A unique cross-comparison between the HOPS campaign and a similar, recent campaign at Observatoire de Haute-Provence (Lidar Validation NDACC Experiment; LAVANDE) allowed for an investigation into potential biases in the NASA-STROZ reference lidar. The reference lidar may slightly underestimate ozone number densities above 43 km with respect to the French and German NDACC lidars. Below 20 km, the reference lidar temperatures profiles are 5 to 10 K cooler than the temperatures which are reported by the other instruments.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 499
Author(s):  
Caroline Bonazza ◽  
Jiao Zhu ◽  
Roger Hasler ◽  
Rosa Mastrogiacomo ◽  
Paolo Pelosi ◽  
...  

An electronic biosensor for odors was assembled by immobilizing the silk moth Bombyx mori pheromone binding protein (BmorPBP1) on a reduced graphene oxide surface of a field-effect transistor. At physiological pH, the sensor detects the B. mori pheromones, bombykol and bombykal, with good affinity and specificity. Among the other odorants tested, only eugenol elicited a strong signal, while terpenoids and other odorants (linalool, geraniol, isoamyl acetate, and 2-isobutyl-3-methoxypyrazine) produced only very weak responses. Parallel binding assays were performed with the same protein and the same ligands, using the common fluorescence approach adopted for similar proteins. The results are in good agreement with the sensor’s responses: bombykol and bombykal, together with eugenol, proved to be strong ligands, while the other compounds showed only poor affinity. When tested at pH 4, the protein failed to bind bombykol both in solution and when immobilized on the sensor. This result further indicates that the BmorPBP1 retains its full activity when immobilized on a surface, including the conformational change observed in acidic conditions. The good agreement between fluorescence assays and sensor responses suggests that ligand-binding assays in solution can be used to screen mutants of a binding protein when selecting the best form to be immobilized on a biosensor.


2021 ◽  
pp. 136843022097903
Author(s):  
Alexander P. Landry ◽  
Elliott Ihm ◽  
Jonathan W. Schooler

Metadehumanization, the perception that members of an outgroup dehumanize your group, has been found to exacerbate intergroup conflict by inspiring reciprocal dehumanization of the offending outgroup. Moreover, metadehumanization is distinct from metaprejudice (i.e., the perception that an outgroup hates your group). Given the mutual animosity reported in public opinion polls toward the other side, we believed US–Russia relations would be a worthwhile context in which to extend this model. Therefore, we measured Americans’ levels of metadehumanization and metaprejudice of Russians to determine the association between these perceptions and their hostility toward Russians (Study 1). In this novel intergroup conflict, metadehumanization remained a consequential predictor of outgroup hostility over and above metaprejudice, suggesting that it can exacerbate a broader range of intergroup conflicts than those heretofore examined. Given these findings, we then sought to experimentally differentiate between metadehumanization and metaprejudice. In Study 2, we manipulated both metadehumanization and metaprejudice to (a) determine whether one or both cause greater outgroup hostility and (b) elucidate the underlying mechanisms by which they may produce this effect. Whereas metadehumanization produced greater hostility, metaprejudice did not. Moreover, although both metaperceptions inspired greater prejudice, only metadehumanization led to greater dehumanization. We conclude that metadehumanization may be a particularly potent fomenter of hostility because it inspires reciprocal dehumanization over and above more general negative bias.


2004 ◽  
Vol 18 (09) ◽  
pp. 1351-1368
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

Using a new Hamiltonian of interaction we have calculated the cohesive energy in three-dimensional structures. We have found the news dependences of this energy on the distance between the atoms. The obtained results are in a good agreement with experimental data in ionic, covalent and noble gases crystals. The coupling constant γ between the interacting field and the atoms is somewhat smaller than unity in ionic crystals and is some larger than unity in covalent and noble gases crystals. The formulae found by us are general and may be applied, also, to the other types of interactions, for example, gravitational interactions.


Perception ◽  
1996 ◽  
Vol 25 (12) ◽  
pp. 1419-1436 ◽  
Author(s):  
Paul Locher ◽  
Sharon Gray ◽  
Calvin Nodine

Two experiments were performed to examine how the subjective balance of a painting is created by its structural features and to determine if balance influences the way people look at paintings. Stimuli consisted of sixteen reproductions of twentieth-century paintings varying in artistic style and a reconstructed less-balanced version of each. Participants in experiment 1 determined the location of the balance center of each composition, assigned ‘weights’ to the pictorial features which contributed to the location of the balance center, and rated the picture for balance. It was found that design and museum professionals and individuals untrained in the visual arts were in good agreement as to the structural framework underlying the balance organization of a painting. For all participants, disruption of the balanced organizations of the original compositions led to reliable shifts in the location of the perceived balance centers of the originals compared with their less-balanced perturbations. Additionally, it was observed that particular features as such were not the origin of the balance phenomenon; rather, judgments concerning the balance structure and its center were dependent on the global integration of information across a wide area of the display field, but especially from its central region. Last, the subtle changes in balance structure between versions resulted in lower ratings of balance being assigned to the less-balanced perturbations by the design professionals only; the other two participant groups evaluated overall balance of the versions as comparable. In experiment 2, eye movements of a different group of untrained individuals were recorded as they performed similar tasks on the art stimuli. It was found that disruption of the balance structure of the original representational but not abstract compositions resulted in different regions of the original and perturbed versions being visually explored. Findings of both experiments are related to theoretical notions of balance.


2020 ◽  
Vol 24 (4) ◽  
pp. 2061-2081 ◽  
Author(s):  
Xudong Zhou ◽  
Jan Polcher ◽  
Tao Yang ◽  
Ching-Sheng Huang

Abstract. Ensemble estimates based on multiple datasets are frequently applied once many datasets are available for the same climatic variable. An uncertainty estimate based on the difference between the ensemble datasets is always provided along with the ensemble mean estimate to show to what extent the ensemble members are consistent with each other. However, one fundamental flaw of classic uncertainty estimates is that only the uncertainty in one dimension (either the temporal variability or the spatial heterogeneity) can be considered, whereas the variation along the other dimension is dismissed due to limitations in algorithms for classic uncertainty estimates, resulting in an incomplete assessment of the uncertainties. This study introduces a three-dimensional variance partitioning approach and proposes a new uncertainty estimation (Ue) that includes the data uncertainties in both spatiotemporal scales. The new approach avoids pre-averaging in either of the spatiotemporal dimensions and, as a result, the Ue estimate is around 20 % higher than the classic uncertainty metrics. The deviation of Ue from the classic metrics is apparent for regions with strong spatial heterogeneity and where the variations significantly differ in temporal and spatial scales. This shows that classic metrics underestimate the uncertainty through averaging, which means a loss of information in the variations across spatiotemporal scales. Decomposing the formula for Ue shows that Ue has integrated four different variations across the ensemble dataset members, while only two of the components are represented in the classic uncertainty estimates. This analysis of the decomposition explains the correlation as well as the differences between the newly proposed Ue and the two classic uncertainty metrics. The new approach is implemented and analysed with multiple precipitation products of different types (e.g. gauge-based products, merged products and GCMs) which contain different sources of uncertainties with different magnitudes. Ue of the gauge-based precipitation products is the smallest, while Ue of the other products is generally larger because other uncertainty sources are included and the constraints of the observations are not as strong as in gauge-based products. This new three-dimensional approach is flexible in its structure and particularly suitable for a comprehensive assessment of multiple datasets over large regions within any given period.


2008 ◽  
Vol 8 (3) ◽  
pp. 505-522 ◽  
Author(s):  
G. L. Manney ◽  
W. H. Daffer ◽  
K. B. Strawbridge ◽  
K. A. Walker ◽  
C. D. Boone ◽  
...  

Abstract. The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns were conducted at Eureka (80° N, 86° W) during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Aura Microwave Limb Sounder (MLS), along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high-latitude temperatures throughout the winters. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex in late January through March 2006 compared to that in 2005.


2021 ◽  
Vol 503 (4) ◽  
pp. 5100-5114
Author(s):  
Sebastian Marino

ABSTRACT The dust production in debris discs by grinding collisions of planetesimals requires their orbits to be stirred. However, stirring levels remain largely unconstrained, and consequently the stirring mechanisms as well. This work shows how the sharpness of the outer edge of discs can be used to constrain the stirring levels. Namely, the sharper the edge the lower the eccentricity dispersion must be. For a Rayleigh distribution of eccentricities (e), I find that the disc surface density near the outer edge can be parametrized as tanh [(rmax  − r)/lout], where rmax  approximates the maximum semimajor axis and lout defines the edge smoothness. If the semimajor axis distribution has sharp edges erms is roughly 1.2lout/rmax  or erms = 0.77lout/rmax  if semimajor axes have diffused due to self-stirring. This model is fitted to Atacama Large Millimeter/submillimeter Array data of five wide discs: HD 107146, HD 92945, HD 206893, AU Mic, and HR 8799. The results show that HD 107146, HD 92945, and AU Mic have the sharpest outer edges, corresponding to erms values of 0.121 ± 0.05, $0.15^{+0.07}_{-0.05}$, and 0.10 ± 0.02 if their discs are self-stirred, suggesting the presence of Pluto-sized objects embedded in the disc. Although these stirring values are larger than typically assumed, the radial stirring of HD 92945 is in good agreement with its vertical stirring constrained by the disc height. HD 206893 and HR 8799, on the other hand, have smooth outer edges that are indicative of scattered discs since both systems have massive inner companions.


Sign in / Sign up

Export Citation Format

Share Document