scholarly journals Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing

2012 ◽  
Vol 5 (3) ◽  
pp. 501-516 ◽  
Author(s):  
T. Cheng ◽  
X. Gu ◽  
D. Xie ◽  
Z. Li ◽  
T. Yu ◽  
...  

Abstract. A new aerosol retrieval algorithm using multi-angular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF) for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT) method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weightings to represent the ambient aerosol properties. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained using the cluster analysis technique based on the AERONET sun-photometer observation over East Asia, and the fine and coarse modes are not fixed but can vary. A mixing model of bare soil and green vegetation spectra and the Nadal and Breon model for the bidirectional polarized reflectance factor (BPDF) were used to simulate total and polarized surface reflectance of East Asia. By applying the present algorithm to POLDER measurements, three different aerosol cases of clear, polluted and dust are analyzed to test the algorithm. The comparison of retrieved aerosol optical depth (AOD) and fine-mode fraction (FMF) with those of AERONET sun-photometer observations show reliable results. Preliminary validation is encouraging. Using the new aerosol retrieval algorithm for multi-angular total and polarized measurements, the spatial and temporal variability of anthropogenic aerosol optical properties over East Asia, which were observed during a heavy polluted event, were analyzed. Exceptionally high values of aerosol optical depth contributed by fine mode of up to 0.5 (at 0.865 μm), and high values of fine-mode fraction of up to 0.9, were observed in this case study.

2011 ◽  
Vol 4 (5) ◽  
pp. 5689-5716
Author(s):  
T. Cheng ◽  
X. Gu ◽  
D. Xie ◽  
Z. Li ◽  
T. Yu ◽  
...  

Abstract. A new aerosol retrieval algorithm using multi-angular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF) for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT) method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weightings to represent the ambient aerosol properties. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained using the cluster analysis technique based on the AERONET sun-photometer observation over East Asia. A mixing model of bare soil and green vegetation spectra and the Nadal and Breon model for the bidirectional polarized reflectance factor (BPDF) were used to simulate total and polarized surface reflectance of East Asia. By applying the present algorithm to POLDER measurements, three different aerosol cases of clear, polluted and dust are analyzed to test the algorithm. The comparison of retrieved aerosol optical depth (AOD) and fine-mode fraction (FMF) with those of AERONET sun-photometer observations show reliable results. Preliminary validation is encouraging. Using the new aerosol retrieval algorithm for multi-angular total and polarized measurements, the spatial and temporal variability of anthropogenic aerosol optical properties over East Asia, which were observed during a heavy polluted event, were analyzed. Exceptionally high values of aerosol optical depth contributed by fine mode of up to 0.5 (at 0.865 μm), and high values of fine-mode fraction of up to 0.9, were observed in this case study.


2020 ◽  
Vol 12 (18) ◽  
pp. 3099
Author(s):  
Jean-François Léon ◽  
Nadège Martiny ◽  
Sébastien Merlet

Due to a limited number of monitoring stations in Western Africa, the impact of mineral dust on PM10 surface concentrations is still poorly known. We propose a new method to retrieve PM10 dust surface concentrations from sun photometer aerosol optical depth (AOD) and CALIPSO/CALIOP Level 2 aerosol layer products. The method is based on a multi linear regression model that is trained using co-located PM10, AERONET and CALIOP observations at 3 different locations in the Sahel. In addition to the sun photometer AOD, the regression model uses the CALIOP-derived base and top altitude of the lowermost dust layer, its AOD, the columnar total and columnar dust AOD. Due to the low revisit period of the CALIPSO satellite, the monthly mean annual cycles of the parameters are used as predictor variables rather than instantaneous observations. The regression model improves the correlation coefficient between monthly mean PM10 and AOD from 0.15 (AERONET AOD only) to 0.75 (AERONET AOD and CALIOP parameters). The respective high and low PM10 concentration during the winter dry season and summer season are well produced. Days with surface PM10 above 100 μg/m3 are better identified when using the CALIOP parameters in the multi linear regression model. The number of true positives (actual and predicted concentrations above the threshold) is increased and leads to an improvement in the classification sensitivity (recall) by a factor 1.8. Our methodology can be extrapolated to the whole Sahel area provided that satellite derived AOD maps are used in order to create a new dataset on population exposure to dust events in this area.


2018 ◽  
Author(s):  
Pawan Gupta ◽  
Lorraine A. Remer ◽  
Robert C. Levy ◽  
Shana Mattoo

Abstract. The two MODerate Resolution Imaging Spectroradiometer (MODIS) sensors, aboard Earth Observing Satellites (EOS) Terra and Aqua, have been making aerosol observations for more than 15 years. From these observations, the MODIS dark target (DT) aerosol retrieval algorithm provides aerosol optical depth (AOD) products, globally over both land and ocean. In addition to the standard resolution product (10 × 10 km2), the MODIS collection 6 (C006) data release included a higher resolution (3 × 3 km2). Other than accommodations for the two different resolutions, the 10 km, and 3 km DT algorithms are basically the same. In this study, we perform global validation of the higher resolution AOD over global land by comparing against AERONET measurements. The MODIS-AERONET collocated data sets consist of 161,410 high-confidence AOD pairs from 2000 to 2015 for MODIS Terra and 2003 to 2015 for MODIS-Aqua. We find that 62.5 % and 68.4 % of AODs retrieved from MODIS-Terra and MODIS-Aqua, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2*AOD), with a high correlation (R = 0.87). The scatter is not random but exhibits a mean positive bias of ~ 0.06 for Terra and ~ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e. true AOD) but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with MODIS-Terra showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.


2019 ◽  
Vol 11 (15) ◽  
pp. 1738 ◽  
Author(s):  
Chin-An Lin ◽  
Yi-Chun Chen ◽  
Chian-Yi Liu ◽  
Wei-Ting Chen ◽  
John H. Seinfeld ◽  
...  

Intense economic and industrial development in China has been accompanied by severe local air pollution, as well as in other downwind countries in East Asia. This study analyzes satellite observational data of sulfur dioxide (SO2), nitrogen dioxide (NO2), and aerosol optical depth (AOD) to explore the spatial distribution, long-term temporal variation, and correlation to meteorological conditions over this region over the period 2005–2015. SO2 and NO2 data are retrieved from the ozone monitoring instrument (OMI) onboard the National Aeronautics and Space Administration (NASA) Aura satellite, while AOD data are from the moderate-resolution imaging spectroradiometer (MODIS) onboard the NASA Aqua satellite. Spatial distributions of SO2, NO2, and AOD show the highest levels in the North China Plain (NCP), with hotspots also in Southeastern China (SC) and the Sichuan Basin (SB). Biomass burning also contributes to a high level of AOD in Southeast Asia in spring and in Equatorial Asia in fall. Considering the correlation of pollutant levels to meteorological conditions, monitoring data show that higher temperature and higher relative humidity (RH) favor the conversion of SO2 and NO2 to sulfate and nitrate aerosol, respectively. The impact of stronger lower tropospheric stability facilitates the accumulation of SO2 and NO2 in NCP and SC. Transport of SO2 and NO2 from intense source regions to relatively clean regions is highly influential over East Asia; such transport from the NCP leads to a considerable increase of pollutants in SC, SB, Taiwan Island (TW), and Taiwan Strait (TWS), particularly in winter. Aerosols generated by biomass burning in Southeast Asia and anthropogenic aerosol in SC are transported to TW and TWS and lead to the increase of AOD, with the highest levels of AOD in SC, TW, and TWS occurring in spring. Precipitation results in the removal of pollutants, especially in highly polluted regions, the effect of which is most significant in winter and spring.


2009 ◽  
Vol 9 (5) ◽  
pp. 21619-21645 ◽  
Author(s):  
R. M. Mitchell ◽  
S. K. Campbell ◽  
Y. Qin

Abstract. Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997–2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. The mean mid-visible scattering coefficient obtained from nephelometer measurements over the period 2003–2007 is approximately double that recorded over the preceding 5 yr, with consistent trends in the column aerosol optical depth derived from the sun photometer. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 yr of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24). The aerosol scale height is broadly distributed with a mode typically between 2–3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003–2007 relative to 1997–2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake Eyre Basin may be a significant contributor to changes in the aerosol budget of the continent.


2020 ◽  
Vol 13 (10) ◽  
pp. 5303-5317
Author(s):  
Dmitry M. Kabanov ◽  
Christoph Ritter ◽  
Sergey M. Sakerin

Abstract. In this work, hourly averaged sun photometer data from Barentsburg and Ny-Ålesund, both located on Spitsbergen in the European Arctic, are compared. Our data set comprises the years from 2002 to 2018 with overlapping measurements from both sites during the period from 2011 to 2018. For more turbid periods (aerosol optical depth, AOD, τ0.5>0.1), we found that Barentsburg is typically more polluted than Ny-Ålesund, especially in the shortwave spectrum. However, the diurnal variation in the AOD is highly correlated. Next, τ was divided into a fine and coarse mode. It was found that the fine-mode aerosol optical depth generally dominates and also shows a larger interannual than seasonal variation. The fine-mode optical depth is in fact largest in spring during the Arctic haze period. Overall the aerosol optical depth seems to decrease (at 500 nm the fine-mode optical depth decreased by 0.016 over 10 years), although this is hardly statistically significant.


2019 ◽  
Vol 11 (9) ◽  
pp. 1108 ◽  
Author(s):  
Wenhao Zhang ◽  
Hui Xu ◽  
Lili Zhang

This study conducted the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the observations by the Advanced Himawari Imager (AHI) onboard the Himawari-8 satellite. The AHI Level 3 AOD (Version 3.0) was evaluated using the collocated Aerosol Robotic Network (AERONET) level 2.0 direct sun AOD measurements over the last three years (May 2016–December 2018) at 58 selected AERONET sites. A comprehensive comparison between AHI and AERONET AOD was carried out, which yielded a correlation coefficient (R) of 0.82, a slope of 0.69, and a root mean square error (RMSE) of 0.16. The results indicate a good agreement between AHI and AERONET AOD, while revealing that the AHI aerosol retrieval algorithm tends to underestimate the atmospheric aerosol load. In addition, the expected uncertainty of AHI Level 3 AOD (Version 3.0) is ± (0.1 + 0.3 × AOD). Furthermore, the performance of the AHI aerosol retrieval algorithm exhibits regional variation. The best performance is reported over East Asia (R 0.86), followed by Southeast Asia (R 0.79) and Australia (R 0.35). The monthly and seasonal comparisons between AHI and AERONET show that the best performance is found in summer (R 0.93), followed by autumn (R 0.84), winter (R 0.82), and spring (R 0.76). The worst performance was observed in March (R 0.75), while the best performance appeared in June (R 0.94). The variation in the annual mean AHI AOD on the scale of hours demonstrates that AHI can perform continuous (no less than ten hours) aerosol monitoring.


2020 ◽  
Vol 12 (9) ◽  
pp. 1524 ◽  
Author(s):  
Chong Li ◽  
Jing Li ◽  
Oleg Dubovik ◽  
Zhao-Cheng Zeng ◽  
Yuk L. Yung

When retrieving Aerosol Optical Depth (AOD) from passive satellite sensors, the vertical distribution of aerosols usually needs to be assumed, potentially causing uncertainties in the retrievals. In this study, we use the Moderate Resolution Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors as examples to investigate the impact of aerosol vertical distribution on AOD retrievals. A series of sensitivity experiments was conducted using radiative transfer models with different aerosol profiles and surface conditions. Assuming a 0.2 AOD, we found that the AOD retrieval error is the most sensitive to the vertical distribution of absorbing aerosols; a −1 km error in aerosol scale height can lead to a ~30% AOD retrieval error. Moreover, for this aerosol type, ignoring the existence of the boundary layer can further result in a ~10% AOD retrieval error. The differences in the vertical distribution of scattering and absorbing aerosols within the same column may also cause −15% (scattering aerosols above absorbing aerosols) to 15% (scattering aerosols below absorbing aerosols) errors. Surface reflectance also plays an important role in affecting the AOD retrieval error, with higher errors over brighter surfaces in general. The physical mechanism associated with the AOD retrieval errors is also discussed. Finally, by replacing the default exponential profile with the observed aerosol vertical profile by a micro-pulse lidar at the Beijing-PKU site in the VIIRS retrieval algorithm, the retrieved AOD shows a much better agreement with surface observations, with the correlation coefficient increased from 0.63 to 0.83 and bias decreased from 0.15 to 0.03. Our study highlights the importance of aerosol vertical profile assumption in satellite AOD retrievals, and indicates that considering more realistic profiles can help reduce the uncertainties.


2012 ◽  
Vol 12 (5) ◽  
pp. 2631-2640 ◽  
Author(s):  
S. Itahashi ◽  
I. Uno ◽  
K. Yumimoto ◽  
H. Irie ◽  
K. Osada ◽  
...  

Abstract. Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr−1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr−1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 3–8% yr−1 to a peak around 2005–2006 and subsequently decreased by 2–7% yr−1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD above the Sea of Japan marked a 4.1% yr−1 decline between 2007 and 2010, which corresponded to the 9% yr−1 decline in SO2 emissions from China during the same period.


Sign in / Sign up

Export Citation Format

Share Document