scholarly journals Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone

2013 ◽  
Vol 6 (7) ◽  
pp. 1633-1646 ◽  
Author(s):  
H. M. Worden ◽  
D. P. Edwards ◽  
M. N. Deeter ◽  
D. Fu ◽  
S. S. Kulawik ◽  
...  

Abstract. A current obstacle to the observation system simulation experiments (OSSEs) used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs). We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO) and ozone (O3) based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere) on the Earth Observing System (EOS)-Terra satellite and TES (Tropospheric Emission Spectrometer) and OMI (Ozone Monitoring Instrument) on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs), solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD) for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs performed to date. For both CO and O3 in the lower troposphere, we find a significant reduction in error when using the predicted AKs as compared to a single average AK. This study examined data from the continental United States (CONUS) for 2006, but the approach could be applied to other regions and times.

2013 ◽  
Vol 6 (2) ◽  
pp. 2751-2791 ◽  
Author(s):  
H. M. Worden ◽  
D. P. Edwards ◽  
M. N. Deeter ◽  
D. Fu ◽  
S. S. Kulawik ◽  
...  

Abstract. A current obstacle to the Observation System Simulation Experiments (OSSEs) used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs). We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO) and ozone (O3) based on actual retrievals from MOPITT on EOS-Terra and TES and OMI on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMR), solar zenith angle, water vapor amount, etc. We first compute the singular vector decomposition (SVD) for individual cloud-free AKs and retain the 1st three ranked singular vectors in order to fit the most significant, orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true test set retrieval AKs. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs performed to-date. For both CO and O3 in the lower troposphere, we find a significant reduction in error when using the predicted AKs as compared to a single average AK. This study examined data from the continental United States (CONUS) for 2006, but the approach could be applied to other regions and times.


2020 ◽  
Vol 20 (6) ◽  
pp. 3945-3963
Author(s):  
Frank Roux ◽  
Hannah Clark ◽  
Kuo-Ying Wang ◽  
Susanne Rohs ◽  
Bastien Sauvage ◽  
...  

Abstract. The research infrastructure IAGOS (In-Service Aircraft for a Global Observing System) equips commercial aircraft with instruments to monitor the composition of the atmosphere during flights around the world. In this article, we use data from two China Airlines aircraft based in Taipei (Taiwan) which provided daily measurements of ozone, carbon monoxide and water vapour throughout the summer of 2016. We present time series, from the surface to the upper troposphere, of ozone, carbon monoxide and relative humidity near Taipei, focusing on periods influenced by the passage of typhoons. We examine landing and take-off profiles in the vicinity of tropical cyclones using ERA-5 reanalyses to elucidate the origin of the anomalies in the vertical distribution of these chemical species. Results indicate a high ozone content in the upper- to middle-troposphere track of the storms. The high ozone mixing ratios are generally correlated with potential vorticity and anti-correlated with relative humidity, suggesting stratospheric origin. These results suggest that tropical cyclones participate in transporting air from the stratosphere to troposphere and that such transport could be a regular feature of typhoons. After the typhoons passed Taiwan, the tropospheric column was filled with substantially lower ozone mixing ratios due to the rapid uplift of marine boundary layer air. At the same time, the relative humidity increased, and carbon monoxide mixing ratios fell. Locally, therefore, the passage of typhoons has a positive effect on air quality at the surface, cleansing the atmosphere and reducing the mixing ratios of pollutants such as CO and O3.


2019 ◽  
Vol 19 (23) ◽  
pp. 15049-15071
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, precipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from midlatitudes, enhancing transport during winter and inhibiting transport during summer. We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred Wegener Institute Polar 6 aircraft, covering an area from Spitsbergen to Alaska (134 to 17∘ W and 68 to 83∘ N). Using these data we characterized the transport regimes of midlatitude air masses traveling to the high Arctic based on CO and CO2 measurements as well as kinematic 10 d back trajectories. We found that dynamical isolation of the high Arctic lower troposphere leads to gradients of chemical tracers reflecting different local chemical lifetimes, sources, and sinks. In particular, gradients of CO and CO2 allowed for a trace-gas-based definition of the polar dome boundary for the two measurement periods, which showed pronounced seasonal differences. Rather than a sharp boundary, we derived a transition zone from both campaigns. In July 2014 the polar dome boundary was at 73.5∘ N latitude and 299–303.5 K potential temperature. During April 2015 the polar dome boundary was on average located at 66–68.5∘ N and 283.5–287.5 K. Tracer–tracer scatter plots confirm different air mass properties inside and outside the polar dome in both spring and summer. Further, we explored the processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the springtime polar dome mainly experienced diabatic cooling while traveling over cold surfaces. In contrast, air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above through radiative cooling. Ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Air masses inside and outside the polar dome were also distinguished by different chemical compositions of both trace gases and aerosol particles. We found that the fraction of amine-containing particles, originating from Arctic marine biogenic sources, is enhanced inside the polar dome. In contrast, concentrations of refractory black carbon are highest outside the polar dome, indicating remote pollution sources. Synoptic-scale weather systems frequently disturb the transport barrier formed by the polar dome and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low-pressure system south of Resolute Bay brought inflow from southern latitudes, which pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9±2.5 to 84.9±4.7 ppbv between these two regimes. At the same time CO2 mixing ratios significantly decreased from 398.16 ± 1.01 to 393.81 ± 2.25 ppmv. Our results demonstrate the utility of applying a tracer-based diagnostic to determine the polar dome boundary for interpreting observations of atmospheric composition in the context of transport history.


2014 ◽  
Vol 14 (23) ◽  
pp. 12983-13012 ◽  
Author(s):  
T. Amnuaylojaroen ◽  
M. C. Barth ◽  
L. K. Emmons ◽  
G. R. Carmichael ◽  
J. Kreasuwun ◽  
...  

Abstract. In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.3 using Model for Ozone and Related Chemical Tracers (MOZART) gas-phase chemistry and Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) aerosols to examine the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO), the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and SEAC4RS emissions. Biomass-burning emissions are from the Fire Inventory from the National Center for Atmospheric Research (NCAR) (FINNv1) model. WRF-Chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict the NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass-burning emissions add more variability. The different anthropogenic emissions differ by up to 30% in CO emissions, but O3 and CO mixing ratios averaged over the land areas of the model domain differ by ~4.5% and ~8%, respectively, among the simulations. Biomass-burning emissions create a substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing the March biomass-burning period to the December period with low biomass-burning emissions. The simulations show that none of the anthropogenic emission inventories are better than the others for predicting O3 surface mixing ratios. However, the simulations with different anthropogenic emission inventories do differ in their predictions of CO surface mixing ratios producing variations of ~30% for March and 10–20% for December at Thai surface monitoring sites.


2007 ◽  
Vol 7 (1) ◽  
pp. 1327-1356 ◽  
Author(s):  
A. Chevalier ◽  
F. Gheusi ◽  
R. Delmas ◽  
C. Ordó\\ nez ◽  
C. Sarrat ◽  
...  

Abstract. The PAES (French acronym for synoptic scale atmospheric pollution) network focuses on the chemical composition (ozone, CO, NOx/y and aerosols) of the lower troposphere (0–3000 m). Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program). They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios with those of the last decade found in the literature for two high-elevation sites (Pic du Midi, 2877 m and Jungfraujoch, 3580 m) leads to a trend that has slowed down compared to old trends but remains positive. This could be attribuable to the reduction of ozone precursors at European scale, that however do not compensate an ozone increase at the global scale. Averaged levels of ozone increase with elevation in good agreement with data provided by the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft), showing a highly stratified ozone field in the lower troposphere, with a transition at about 1000 m asl between a sharp gradient (30 ppb/km) below but a gentler gradient (3 ppb/km) above. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes at the same altitude. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above – and at all levels in winter – where ozone variability is mostly due to day-to-day changes (linked to weather conditions or synoptic transport). Monthly-mean ozone mixing-ratios show at all levels a minimum in winter and the classical summer broad maximum in spring and summer – which is actually the superposition of the tropospheric spring maximum (April–May) and regional pollution episodes linked to persistent anticyclonic conditions that may occur from June to September. To complement this classical result it is shown that summer maxima are associated with considerably more variability than the spring maximum. This ensemble of findings support the relevance of mountain station networks such as PAES for the long-term observation of free-tropospheric ozone over Europe.


2010 ◽  
Vol 10 (24) ◽  
pp. 12295-12316 ◽  
Author(s):  
S. Gilge ◽  
C. Plass-Duelmer ◽  
W. Fricke ◽  
A. Kaiser ◽  
L. Ries ◽  
...  

Abstract. Long-term, ground based in-situ observations of ozone (O3) and its precursor gases nitrogen dioxide (NO2) and carbon monoxide (CO) from the four sites Hohenpeissenberg and Zugspitze (D), Sonnblick (A) and Jungfraujoch (CH) are presented for the period 1995–2007. These Central European alpine mountain observatories cover an altitude range of roughly 1000 to 3500 m. Comparable analytical methods and common quality assurance (QA) procedures are used at all sites. For O3 and CO, calibration is linked to primary calibrations (O3) or CO standards provided by the Central Calibration Laboratory (CCL) at NOAA/ESRL. All stations have been audited by the World Calibration Centre (WCC) for CO and O3 (WCC-Empa; CH). Data from long-term measurements of NO2 and CO are only available from Hohenpeissenberg and Jungfraujoch. Both sites show slightly decreasing mixing ratios of the primarily emitted NO2 and the partly anthropogenically emitted CO between 1995 and 2007. The findings are generally consistent with shorter observation periods at Zugspitze and Sonnblick and thus are considered to represent regional changes in Central European atmospheric composition at this altitude range. Over the same period, 1995–2007, the O3 mixing ratios have slightly increased at three of the four sites independent of wind sector. Trends are often more pronounced in winter and less in summer; highest declines of NO2 and CO are observed in winter and the lowest in summer, whereas the strongest O3 increase was detected in winter and lowest or even decline in summer, respectively. Weekly cycles demonstrate anthropogenic impact at all elevations with enhanced NO2 on working days compared to weekends. Enhanced O3 values on working days indicating photochemical production from anthropogenic precursors are only observed in summer, whereas in all other seasons anti-correlation with NO2 was found due to reduced O3 values on working days. Trends are discussed with respect to anthropogenic impacts and vertical mixing. The observed trends for NO2 at the alpine mountain sites are less pronounced than trends estimated based on emission inventories.


2017 ◽  
Author(s):  
Bastien Sauvage ◽  
Alain Fontaine ◽  
Sabine Eckhardt ◽  
Antoine Auby ◽  
Damien Boulanger ◽  
...  

Abstract. Since 1994, the In-service Aircraft for a Global Observing System (IAGOS) program has produced in-situ measurements of the atmospheric composition during more than 51000 commercial flights. In order to help analyzing these observations and understanding the processes driving the observed concentration distribution and variability, we developed the SOFT-IO tool to quantify source/receptor links for all measured data. Based on the FLEXPART particle dispersion model (Stohl et al., 2005), SOFT-IO simulates the contributions of anthropogenic and biomass burning emissions from the ECCAD emission inventory database for all locations and times corresponding to the measured carbon monoxide mixing ratios along each IAGOS flight. Contributions are simulated from emissions occurring during the last 20 days before an observation, separating individual contributions from the different source regions. The main goal is to supply added-value products to the IAGOS database by evincing the geographical origin and emission sources driving the CO enhancements observed in the troposphere and lower stratosphere. This requires a good match between observed and modeled CO enhancements. Indeed, SOFT-IO detects more than 95 % of the observed CO anomalies over most of the regions sampled by IAGOS in the troposphere. In the majority of cases, SOFT-IO simulates CO pollution plumes with biases lower than 10–15 ppbv. Differences between the model and observations are larger for very low or very high observed CO values. The added-value products will help in the understanding of the trace-gas distribution and seasonal variability. They are available in the IAGOS data base via http://www.iagos.org. The SOFT-IO tool could also be applied to similar data sets of CO observations (e.g. ground-based measurements, satellite observations). SOFT-IO could also be used for statistical validation as well as for inter-comparisons of emission inventories using large amounts of data.


2014 ◽  
Vol 14 (17) ◽  
pp. 9295-9316 ◽  
Author(s):  
O. Stein ◽  
M. G. Schultz ◽  
I. Bouarar ◽  
H. Clark ◽  
V. Huijnen ◽  
...  

Abstract. Despite the developments in the global modelling of chemistry and of the parameterization of the physical processes, carbon monoxide (CO) concentrations remain underestimated during Northern Hemisphere (NH) winter by most state-of-the-art chemistry transport models. The consequential model bias can in principle originate from either an underestimation of CO sources or an overestimation of its sinks. We address both the role of surface sources and sinks with a series of MOZART (Model for Ozone And Related Tracers) model sensitivity studies for the year 2008 and compare our results to observational data from ground-based stations, satellite observations, and vertical profiles from measurements on passenger aircraft. In our base case simulation using MACCity (Monitoring Atmospheric Composition and Climate project) anthropogenic emissions, the near-surface CO mixing ratios are underestimated in the Northern Hemisphere by more than 20 ppb from December to April, with the largest bias of up to 75 ppb over Europe in January. An increase in global biomass burning or biogenic emissions of CO or volatile organic compounds (VOCs) is not able to reduce the annual course of the model bias and yields concentrations over the Southern Hemisphere which are too high. Raising global annual anthropogenic emissions with a simple scaling factor results in overestimations of surface mixing ratios in most regions all year round. Instead, our results indicate that anthropogenic CO and, possibly, VOC emissions in the MACCity inventory are too low for the industrialized countries only during winter and spring. Reasonable agreement with observations can only be achieved if the CO emissions are adjusted seasonally with regionally varying scaling factors. A part of the model bias could also be eliminated by exchanging the original resistance-type dry deposition scheme with a parameterization for CO uptake by oxidation from soil bacteria and microbes, which reduces the boreal winter dry deposition fluxes. The best match to surface observations, satellite retrievals, and aircraft observations was achieved when the modified dry deposition scheme was combined with increased wintertime road traffic emissions over Europe and North America (factors up to 4.5 and 2, respectively). One reason for the apparent underestimation of emissions may be an exaggerated downward trend in the Representative Concentration Pathway (RCP) 8.5 scenario in these regions between 2000 and 2010, as this scenario was used to extrapolate the MACCity emissions from their base year 2000. This factor is potentially amplified by a lack of knowledge about the seasonality of emissions. A methane lifetime of 9.7 yr for our basic model and 9.8 yr for the optimized simulation agrees well with current estimates of global OH, but we cannot fully exclude a potential effect from errors in the geographical and seasonal distribution of OH concentrations on the modelled CO.


2015 ◽  
Vol 15 (9) ◽  
pp. 5275-5303 ◽  
Author(s):  
A. Inness ◽  
A.-M. Blechschmidt ◽  
I. Bouarar ◽  
S. Chabrillat ◽  
M. Crepulja ◽  
...  

Abstract. Daily global analyses and 5-day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of Measurements of Pollution in the Troposphere (MOPITT) CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) extratropics during winter, and during the South African biomass-burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.


2008 ◽  
Vol 8 (1) ◽  
pp. 1505-1548 ◽  
Author(s):  
K. W. Bowman ◽  
D. Jones ◽  
J. Logan ◽  
H. Worden ◽  
F. Boersma ◽  
...  

Abstract. The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so-called zonal "wave-one" pattern, which is characterized by peak ozone concentrations (70–80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60–70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30–40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.


Sign in / Sign up

Export Citation Format

Share Document