scholarly journals Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign

2019 ◽  
Vol 12 (8) ◽  
pp. 4619-4641 ◽  
Author(s):  
Myungje Choi ◽  
Hyunkwang Lim ◽  
Jhoon Kim ◽  
Seoyoung Lee ◽  
Thomas F. Eck ◽  
...  

Abstract. Recently launched multichannel geostationary Earth orbit (GEO) satellite sensors, such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI), provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low Earth orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), with a maximum of one or two overpass daylight times per day from midlatitudes to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the latest versions of aerosol optical depth (AOD) products from three LEO sensors – MODIS (Dark Target, Deep Blue, and MAIAC), MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS), along with two GEO sensors (GOCI and AHI), are validated, compared, and integrated for a period during the Korea–United States Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy with high R (0.84–0.93) and low RMSE (0.12–0.17), but their error characteristics differ according to the use of several different surface-reflectance estimation methods. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to the Korean Peninsula on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in South Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median value selection with a 0.5∘×0.5∘ grid resolution. The combined AOD is spatially continuous and has a greater number of pixels with high accuracy (fraction within expected error range of 0.61) than individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and the results presented here can be used to evaluate satellite measurement bias and air quality models.

2019 ◽  
Author(s):  
Myungje Choi ◽  
Hyunkwang Lim ◽  
Jhoon Kim ◽  
Seoyoung Lee ◽  
Thomas F. Eck ◽  
...  

Abstract. Recently launched multi-channel geostationary-Earth-orbit (GEO) satellite sensors such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI) provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low-Earth-orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) with a maximum of one or two overpass daylight times per day at mid- to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the aerosol optical depth (AOD) products from three LEO sensors – MODIS, MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS) – along with two GEO sensors – GOCI and AHI – are validated, compared and integrated for the period during the Korea–United Sates Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy, but their error characteristics differ according to the use of several different surface-reflectance estimation methods plus differences in cloud screening. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to Korea on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more-representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median-value selection with a 0.5° × 0.5° grid resolution. The combined AOD is more spatially continuous and of higher accuracy than the individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and results presented here can be used to evaluate satellite measurement bias and air-quality models.


2015 ◽  
Vol 8 (8) ◽  
pp. 3117-3133 ◽  
Author(s):  
D. Pérez-Ramírez ◽  
I. Veselovskii ◽  
D. N. Whiteman ◽  
A. Suvorina ◽  
M. Korenskiy ◽  
...  

Abstract. This work deals with the applicability of the linear estimation technique (LE) to invert spectral measurements of aerosol optical depth (AOD) provided by AERONET CIMEL sun photometers. The inversion of particle properties using only direct-sun AODs allows the evaluation of parameters such as effective radius (reff) and columnar volume aerosol content (V) with significantly better temporal resolution than the operational AERONET algorithm which requires both direct sun and sky radiance measurements. Sensitivity studies performed demonstrate that the constraints on the range of the inversion are very important to minimize the uncertainties, and therefore estimates of reff can be obtained with uncertainties less than 30 % and of V with uncertainties below 40 %. The LE technique is applied to data acquired at five AERONET sites influenced by different aerosol types and the retrievals are compared with the results of the operational AERONET code. Good agreement between the two techniques is obtained when the fine mode predominates, while for coarse mode cases the LE results systematically underestimate both reff and V. The highest differences are found for cases where no mode predominates. To minimize these biases, correction functions are developed using the multi-year database of observations at selected sites, where the AERONET retrieval is used as the reference. The derived corrections are tested using data from 18 other AERONET stations offering a range of aerosol types. After correction, the LE retrievals provide better agreement with AERONET for all the sites considered. Finally, the LE approach developed here is applied to AERONET and star-photometry measurements in the city of Granada (Spain) to obtain day-to-night time evolution of columnar aerosol microphysical properties.


2018 ◽  
Vol 69 ◽  
pp. 12-24
Author(s):  
Furqan Mahmud Butt ◽  
Muhammad Imran Shahzad ◽  
Seemab Khalid ◽  
Nadeem Iqbal ◽  
Anjum Rasheed ◽  
...  

Air pollution in Pakistan is causing damage to health, environment and quality of life. Air pollution in Pakistan is not effectively monitored due to heavy cost involved in setting up ground stations. However, Satellite remote sensing can effectively monitor the air pollution in terms of Aerosol Optical Depth (AOD) at regional as well as global level. However, algorithms used to derive AOD from different sensors have some inherited differences which can pose challenges in monitoring regional AOD at high temporal resolution using more than one sensor. Therefore, this study focuses on comparison of four major satellite based AOD products namely Moderate Resolution Imaging SpectroRadiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), Ozone Monitoring Instrument multiwavelength (OMI) aerosol product and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) with the ground based AErosol RObotic NETwork (AERONET) AOD which is only available from Lahore and Karachi in Pakistan. The correlation of various AOD products with AERONET AOD is estimated statistically through coefficient of determination (R2), Root Mean Square Error (RMSE), slope and intercept. It is noticed that MODIS is relatively accurate and reliable for monitoring air quality on operational bases over the land cover area of Lahore (R2= 0.78; RMSE = 0.18 ), whereas MISR over the coastal areas of Karachi (R2= 0.82; RMSE = 0.20 ). The results of the study will help the stakeholders in planning additional ground stations for operational monitoring of air quality at regional level.


2021 ◽  
Vol 13 (12) ◽  
pp. 2376
Author(s):  
Lijuan Chen ◽  
Ying Fei ◽  
Ren Wang ◽  
Peng Fang ◽  
Jiamei Han ◽  
...  

High temporal resolution aerosol optical depth (AOD) products are very important for the studies of atmospheric environment and climate change. Geostationary Ocean Color Imager (GOCI) is a suitable data source for AOD retrieval, as it can monitor hourly aerosol changes and make up for the low temporal resolution deficiency of polar orbiting satellite. In this study, we proposed an algorithm for retrieving high temporal resolution AOD using GOCI data and then applied the algorithm in the Yangtze River Delta, a typical region suffering severe air pollution issues. Based on Moderate-resolution Imaging Spectroradiometer (MODIS) surface reflectance determined by MODIS V5.2 algorithm and MODIS Bidirectional Reflectance Distribution Function (BRDF) data, after spectral conversion between MODIS and GOCI, the GOCI surface reflectance at different solar angles were obtained and used to retrieve AOD. Five indicators including correlation coefficient (R), significant level of the correlation (p value), mean absolute error (MAE), mean relative error (MRE) and root mean square error (RMSE) were employed to analyze the errors between the Aerosol Robotic Network (AERONET) observed AOD and the GOCI retrieved AOD. The results showed that the GOCI AOD retrieved by the continental aerosol look-up table was consistent with the AERONET AOD (R > 0.7, p ≤ 0.05). The highest R value of Taihu Station and Xuzhou CUMT Station are both 0.84 (8:30 a.m.); the minimum RMSE at Taihu and Xuzhou-CUMT stations were 0.2077 (11:30 a.m.) and 0.1937 (10:30 a.m.), respectively. Moreover, the results suggested that the greater the solar angle of the GOCI sensor, the higher the AOD retrieval accuracy, while the retrieved AOD at noon exhibited the largest error as assessed by MAE and MRE. We concluded that the inaccurate estimation of surface reflectance was the root cause of the retrieval errors. This study has implications in providing a deep understanding of the effects of solar angle changes on retrieving AOD using GOCI.


2015 ◽  
Vol 8 (3) ◽  
pp. 2331-2378
Author(s):  
D. Pérez-Ramírez ◽  
I. Veselovskii ◽  
D. N. Whiteman ◽  
A. Suvorina ◽  
M. Korenskiy ◽  
...  

Abstract. This work deals with the applicability of the Linear Estimation technique (LE) to invert spectral measurements of aerosol optical depth (AOD) provided by AERONET CIMEL sun-photometers. The inversion of particle properties using only direct sun AODs allows the evaluation of parameters such as effective radius (reff) and columnar volume aerosol content (V) with significantly better temporal resolution than the operational AERONET algorithm which requires both direct sun and sky radiance measurements. Sensitivity studies performed demonstrate that the constraints on the range of the inversion are very important to minimize the uncertainties, and therefore estimates of reff can be obtained with uncertainties less than 30% and of V with uncertainties below 40%. The LE technique is applied to data acquired at five AERONET sites influenced by different aerosol types and the retrievals are compared with the results of the operational AERONET code. Good agreement between the two techniques is obtained when the fine mode predominates, while for coarse mode cases the LE results systematically underestimate both reff and V. The highest differences are found for cases where no mode predominates. To minimize these biases, correction functions are developed using the multi-year database of observations at selected sites, where the AERONET retrieval is used as the reference. The derived corrections are tested using data from 18 other AERONET stations offering a range of aerosol types. After correction, the LE retrievals provide better agreement with AERONET for all the sites considered. Finally, the LE approach developed here is applied to AERONET and star-photometry measurements at the city of Granada (Spain) to obtain day-to-night time-evolution of columnar aerosol microphysical properties.


2021 ◽  
Author(s):  
Shixian Zhai ◽  
Daniel J. Jacob ◽  
Jared F. Brewer ◽  
Ke Li ◽  
Jonathan M. Moch ◽  
...  

Abstract. Geostationary satellite sensors over East Asia (GOCI and AHI) are now providing continuous mapping of aerosol optical depth (AOD) at 550 nm to improve monitoring of fine particulate matter (PM2.5) air quality. Here we evaluate our understanding of the physical relationships between AOD and PM2.5 over East Asia by using the GEOS-Chem atmospheric chemistry model to simulate observations from multiple sources: 1) the joint NASA-NIER Korea – United States Air Quality aircraft campaign over South Korea (KORUS-AQ; May–June 2016); 2) AODs from the AERONET ground-based network; 3) AOD from a new GOCI/AHI fused product; and 4) surface PM2.5 networks in South Korea and China. The KORUS-AQ data show that 550 nm AOD is mainly contributed by sulfate-nitrate-ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and the high hygroscopicity of the PBL aerosols. Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM2.5 nitrate. A broader analysis of the GOCI/AHI AOD data over East Asia in different seasons shows agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. This is due to low PBL depths compounded by high residential coal emissions in winter, and high relative humidity (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation of PBL depth and lack of residential coal emissions. Physical interpretation of the satellite AOD data in terms of surface PM2.5 is sensitive to accurate information on aerosol size distributions, PBL depths, RH, the role of coarse particles, and diurnal variation of PM2.5.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Evgueni Kassianov ◽  
Erol Cromwell ◽  
Justin Monroe ◽  
Laura D. Riihimaki ◽  
Connor Flynn ◽  
...  

AbstractAerosol optical depth (AOD) characterizes the aerosol burden in the atmosphere, while its wavelength dependence is a sign of particle size. Long-term records of wavelength-resolved AOD with high quality and suitable continuity are required for climate change assessment. Typically, climate-related studies use AOD products provided by several, and perhaps different, ground-based instruments. The measurements from these instruments often have different accuracy and temporal resolution. To preserve the advantages of these products (high quality) and to reduce their disadvantages (patchy records), we generate a merged dataset obtained from four instruments deployed at a US continental site in which a nearly-continuous AOD record is found at two wavelengths (500 and 870 nm) with high quality and high temporal resolution (1-min) for a 21-yr period (1997–2018). The combined dataset addresses: (1) varying data quality and resolution mismatch of the individual AOD records, and (2) the uncertainty of the merged AOD and its relevance for user-specified needs. The generated dataset will be beneficial for a wide range of applications including aerosol-radiation interactions.


Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2017 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South-East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network), the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, on multiyear CALIPSO observations (01/2007–12/2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over SE (South-East) Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (Dust Aerosol Optical Depth) values, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with highest values observed during spring for northern China (Taklimakan/Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally we decompose the CALIPSO AOD (Aerosol Optical Depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of SE Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between 01/2007 and 12/2015 are calculated over SE Asia and over selected sub-regions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


Sign in / Sign up

Export Citation Format

Share Document