scholarly journals Optical properties of a heated aerosol in an urban atmosphere: a case study

2010 ◽  
Vol 3 (2) ◽  
pp. 1583-1614
Author(s):  
J. Backman ◽  
A. Virkkula ◽  
T. Petäjä ◽  
M. Aurela ◽  
A. Frey ◽  
...  

Abstract. Light absorption measurements most commonly rely on filter-based measurement techniques. These methods are disturbed by light scattering constituents in the aerosol phase deposited on the filters. The light scattering material changes the optical path of light in the filter matrix increasing the light absorption of the filter. Measurement equipment interpret this wrongly as light absorption by the aerosol. Most light scattering constituents in a sub-micron aerosol are volatile by their nature and they can be volatilized by heating the sample air. This volatilisation significantly alters the optical properties of the urban aerosol and was studied during a short field campaign with two groups of equipment measuring in parallel for six days in April 2009 at the SMEAR III station in Helsinki. When heated, the light scattering constituents were evaporated thus reducing the single-scattering albedo (ω0) of the aerosol by as much as 0.4. With less light scattering constituents in the aerosol phase the mass absorption cross section (MAC) of soot was calculated to be 13.5±0.5 m2 g−1 at λ=545 nm. An oven was set to scan different temperatures which revealed the volatility of the urban aerosol at different temperatures as well as the single-scattering albedo's dependence on the non-volatile volume fraction remaining (NVFR). At 50 °C 79±13% of the volume remained while only 46±8% remained at 150 °C and just 23±6% at 280 °C. At 50 °C ω0 was 0.65±0.06, at 150 °C ω0=0.54±0.06 and at 280 °C ω0=0.33±0.06. We found that absorption coefficients measured at different temperatures showed a temperature dependency possibly indicating initially different mixing states of the non-volatile constituents.

2010 ◽  
Vol 3 (5) ◽  
pp. 1205-1216 ◽  
Author(s):  
J. Backman ◽  
A. Virkkula ◽  
T. Petäjä ◽  
M. Aurela ◽  
A. Frey ◽  
...  

Abstract. Aerosol light absorption measurements most commonly rely on filter-based techniques. These methods are influenced by light scattering constituents in the aerosol phase deposited on the filters. The coating of soot by non-absorbing constituents changes the mixing state of soot as the aerosol ages and increase light absorption by the aerosol. Most light scattering constituents in a sub-micron aerosol are volatile by their nature due to their chemical composition and can be volatilized by heating the sample air. The initial mixing state is lost but the remaining light absorption by the aerosol should be by non-coated soot alone. This was studied during a short field campaign with two groups of equipment measuring in parallel for six days in April 2009 at the SMEAR III station in Helsinki. When heated, the light scattering constituents were evaporated thus reducing the single-scattering albedo (ω0) of the aerosol by as much as 0.4. An oven was set to scan different temperatures which revealed the volatility of the urban aerosol at different temperatures as well as the single-scattering albedo's dependence on the non-volatile volume fraction remaining (NVFR). The NVFR was 0.72 ± 0.13, 0.42 ± 0.06 and 0.22 ± 0.05 at 50, 150 and 280 °C respectively. ω0 behaved analogically, it was 0.71 ± 0.05, 0.62 ± 0.06 and 0.42 ± 0.07 at the respective temperatures. We found that absorption coefficients measured at different temperatures showed a temperature dependency possibly indicating initially different mixing states of the non-volatile constituents. By heating the aerosol the mode of the size distribution gets shifted to smaller sizes which in turn changes the filter-based instrument's response due increased penetration depth into the filter by the smaller residual particles. This was compensated for by using size distribution data.


2014 ◽  
Vol 14 (13) ◽  
pp. 7031-7043 ◽  
Author(s):  
G. Titos ◽  
A. Jefferson ◽  
P. J. Sheridan ◽  
E. Andrews ◽  
H. Lyamani ◽  
...  

Abstract. Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2012 ◽  
Vol 12 (6) ◽  
pp. 14551-14589 ◽  
Author(s):  
T. Nakayama ◽  
K. Sato ◽  
Y. Matsumi ◽  
T. Imamura ◽  
A. Yamazaki ◽  
...  

Abstract. Recently, secondary organic aerosols (SOAs) generated from anthropogenic volatile organic compounds have been proposed as a possible source of lightabsorbing organic compounds "brown carbon" in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m=n − ki) values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs) under a variety of initial nitrogen oxide (NOx= NO + NO2) conditions were examined by photoacoustic spectroscopy (PAS) and cavity ring down spectroscopy (CRDS). The complex RI values obtained in the present study and reported in the literature indicate that the k value, which represents the light absorption of the toluene-SOAs steeply increased to shorter wavelengths at <405 nm, while the n value gradually increased to shorter wavelengths from 781 to 355 nm. The k values at 405 nm were found to increase from 1.8 × 10−3 to 7.2 × 10−3 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a highresolution time-of-flight aerosol mass spectrometer (H-ToF-AMS) also increased with increasing initial NOx concentration. The RI values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs) were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm). These results can be reasonably explained by the hypothesis that nitro-aromatic compounds such as nitro-cresols are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI values, mass absorption cross sections of the toluene-SOAs at 405 and 532 nm were estimated to be 0.08–0.48 and 0.002–0.081 m2 g−1, respectively, under typical conditions in an urban atmosphere during the daytime. These results indicate that light absorption by the SOAs potentially contributes to the radiation balance at ultraviolet wavelengths below ~400 nm, specifically when the mass concentrations of the anthropogenic SOAs are significant compared with those of black carbon particles.


2019 ◽  
Author(s):  
W. Richard Leaitch ◽  
John K. Kodros ◽  
Megan D. Willis ◽  
Sarah Hanna ◽  
Hannes Schulz ◽  
...  

Abstract. Despite the potential importance of black carbon (BC) to radiative forcing of the Arctic atmosphere, vertically-resolved measurements of the particle light scattering coefficient (Bsp) and light absorption coefficient (Bap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80oN. Here, relationships among vertically-distributed aerosol optical properties Bap, Bsp, and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9oN and 83.4oN from near the surface to 500 hPa. Airborne data collected during April, 2015, are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the GEOS-Chem-TOMAS model (Kodros et al., 2018) to increase our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for Bsp less than 15 Mm-1, which represent 98% of the observed Bsp, because the single scattering albedo (SSA) has a tendency to be lower at lower Bsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g-1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (9.5 m2 g-1 and 7.0 m2 g-1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC and possible differences in BC microphysics and morphologies between the observations and model. We present Bap and SSA based on the assumption that Bap is overestimated in the observations in addition to the assumption that the higher MAC is explained. Median values of the measured Bap, rBC and organic component of particles all increase by a factor of 1.8±0.1 going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics, and Bap agree with the near-surface measurements, but do not reproduce the higher values observed between 900 hPa and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Some discrepancies in the model may be due to the use of a relatively low imaginary refractive index of BC as well as by the ejection of biomass burning particles only into the boundary layer at sources. For the assumption of the higher observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of Bsp <15 Mm-1. The large uncertainties in measuring optical properties and BC as well as the large differences between measured and modelled values, here and in the literature, argue for improved measurements of BC and light absorption by BC as well as more vertical profiles of aerosol chemistry, microphysics, and other optical properties in the Arctic.


2019 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol-cloud-radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single scattering albedo. Most but not all of the biomass-burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single scattering albedo (SSA), absorbing and total aerosol optical depth (AOD and AAOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, EAE) for specific case studies looking at near-coincident and -colocated measurements from multiple instruments, and SSAs for the broader campaign average over the monthlong deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400 > 0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the inter-quartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550 nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


2013 ◽  
Vol 13 (2) ◽  
pp. 531-545 ◽  
Author(s):  
T. Nakayama ◽  
K. Sato ◽  
Y. Matsumi ◽  
T. Imamura ◽  
A. Yamazaki ◽  
...  

Abstract. Recently, secondary organic aerosols (SOAs) generated from anthropogenic volatile organic compounds have been proposed as a possible source of light-absorbing organic compounds, "brown carbon," in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m = n-ki values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs) under a variety of initial nitrogen oxide (NOx = NO + NO2) conditions were examined by photoacoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). The complex RI-values obtained in the present study and reported in the literature indicate that the k-value, which represents the light absorption of the toluene-SOAs, increased to shorter wavelengths at <532 nm, and the n-value also increased to shorter wavelengths from 781 to 355 nm. The k-values at 405 nm were found to increase from 0.0018 to 0.0072 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a high-resolution time-of-flight aerosol mass spectrometer (H-ToF-AMS) also increased with increasing initial NOx concentration. The RI-values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs) were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm). These results can be reasonably explained by the hypothesis that nitroaromatic compounds, such as nitrocresols, are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI-values, mass absorption cross sections of the toluene-SOAs at 405 nm were estimated to be 0.08–0.52 m2g−1 under typical conditions in an urban atmosphere during the daytime. These results indicate that light absorption by the SOAs potentially contributes to the radiation balance at ultraviolet wavelengths below ~400 nm, specifically when the mass concentrations of the anthropogenic SOAs are significant compared with other light-absorbing particles.


2020 ◽  
Vol 20 (17) ◽  
pp. 10545-10563 ◽  
Author(s):  
W. Richard Leaitch ◽  
John K. Kodros ◽  
Megan D. Willis ◽  
Sarah Hanna ◽  
Hannes Schulz ◽  
...  

Abstract. Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing System (GEOS) model, GEOS-Chem, coupled with the TwO-Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, because the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the observations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap∕2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Median values of the measured σap, rBC and the organic component of particles all increase by a factor of 1.8±0.1, going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Model-observation discrepancies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp<15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic.


2012 ◽  
Vol 27 (2) ◽  
pp. 426-430 ◽  
Author(s):  
Per Edström ◽  
Magnus Neuman ◽  
Ludovic G. Coppel

Abstract The Kubelka-Munk scattering and absorption coefficients of a set of paper samples are assessed using reflectance measurements in d/0 geometry. The coefficients display the widely studied dependence between light scattering and light absorption, since the light scattering coefficient decreases in regions of high absorption. It is shown using general radiative transfer theory that part of this dependence can be explained and eliminated by taking into account the geometry of the d/0 instrument and the single scattering anisotropy, thus capturing the angular variations of the light reflected from the samples. These findings allow the papermaker to better predict the reflectance from mixtures of pulps, fillers, dye, and FWA, and to better evaluate bleaching efforts.


2020 ◽  
Vol 13 (3) ◽  
pp. 1195-1212 ◽  
Author(s):  
Zhe Jiang ◽  
Minzheng Duan ◽  
Huizheng Che ◽  
Wenxing Zhang ◽  
Teruyuki Nakajima ◽  
...  

Abstract. This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 (referred to as V5.0 and V4.2) using the radiometer measurements over Qionghai and Yucheng in China, two new sites of the sky radiometer network (SKYNET). As V5.0 uses an a priori size distribution function (SDF) of a bimodal log-normal function, the volume size distribution retrieved by V5.0 presented bimodal patterns with a 0.1–0.2 µm fine particle mode and a 3.0–6.0 µm coarse particle mode both over Qionghai and Yucheng. The differences in the volume size distributions between the two versions were very large for the coarse mode with a radius of over 5 µm. The single scattering albedos (SSAs) by V5.0 correlated with SSAs by V4.2 with R=0.88, 0.87, 0.90, 0.88, and 0.92 at wavelengths of 400, 500, 670, 870, and 1020 nm over Qionghai, respectively. The correlation coefficients were around 0.95, 0.95, 0.96, 0.94, and 0.91 at the five channels in Yucheng. An error of ±5 % for the solid view angle (SVA) introduced about ±2 % differences in retrieved SSA values both by V4.2 and V5.0. An error of ±50 % for ground surface albedo (Ag) caused about 1 % averaged differences in retrieved SSA values by the two versions. With the atmospheric pressure (PRS) increased by 1 %, 2 %, 3 %, and 4 %, the averaged changes in SSAs did not exceed 0.8 % both by V4.2 and V5.0. The SSA differences at 500 nm between the two versions decreased, while aerosol optical depths (AODs) increased over both sites. The seasonal variability of the aerosol properties over Qionghai and Yucheng was investigated based on SKYRAD.pack V5.0. The seasonal averaged AOD over Qionghai had higher values in spring, winter, and autumn and lower values in summer. The AOD averages were commonly higher in summer and spring than in winter and autumn in Yucheng. The lowest seasonal averaged SSAs were both observed in winter at the two sites. The fraction of the fine aerosol particles was much smaller in summer than in other seasons over Qionghai; the volume fraction of the coarse-mode particle in Yucheng had much larger values compared to the fine-mode particle in all seasons. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.


Sign in / Sign up

Export Citation Format

Share Document