scholarly journals Wavelength and NO<sub>x</sub> dependent complex refractive index of SOAs generated from the photooxidation of toluene

2012 ◽  
Vol 12 (6) ◽  
pp. 14551-14589 ◽  
Author(s):  
T. Nakayama ◽  
K. Sato ◽  
Y. Matsumi ◽  
T. Imamura ◽  
A. Yamazaki ◽  
...  

Abstract. Recently, secondary organic aerosols (SOAs) generated from anthropogenic volatile organic compounds have been proposed as a possible source of lightabsorbing organic compounds "brown carbon" in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m=n − ki) values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs) under a variety of initial nitrogen oxide (NOx= NO + NO2) conditions were examined by photoacoustic spectroscopy (PAS) and cavity ring down spectroscopy (CRDS). The complex RI values obtained in the present study and reported in the literature indicate that the k value, which represents the light absorption of the toluene-SOAs steeply increased to shorter wavelengths at <405 nm, while the n value gradually increased to shorter wavelengths from 781 to 355 nm. The k values at 405 nm were found to increase from 1.8 × 10−3 to 7.2 × 10−3 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a highresolution time-of-flight aerosol mass spectrometer (H-ToF-AMS) also increased with increasing initial NOx concentration. The RI values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs) were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm). These results can be reasonably explained by the hypothesis that nitro-aromatic compounds such as nitro-cresols are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI values, mass absorption cross sections of the toluene-SOAs at 405 and 532 nm were estimated to be 0.08–0.48 and 0.002–0.081 m2 g−1, respectively, under typical conditions in an urban atmosphere during the daytime. These results indicate that light absorption by the SOAs potentially contributes to the radiation balance at ultraviolet wavelengths below ~400 nm, specifically when the mass concentrations of the anthropogenic SOAs are significant compared with those of black carbon particles.

2013 ◽  
Vol 13 (2) ◽  
pp. 531-545 ◽  
Author(s):  
T. Nakayama ◽  
K. Sato ◽  
Y. Matsumi ◽  
T. Imamura ◽  
A. Yamazaki ◽  
...  

Abstract. Recently, secondary organic aerosols (SOAs) generated from anthropogenic volatile organic compounds have been proposed as a possible source of light-absorbing organic compounds, "brown carbon," in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m = n-ki values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs) under a variety of initial nitrogen oxide (NOx = NO + NO2) conditions were examined by photoacoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). The complex RI-values obtained in the present study and reported in the literature indicate that the k-value, which represents the light absorption of the toluene-SOAs, increased to shorter wavelengths at <532 nm, and the n-value also increased to shorter wavelengths from 781 to 355 nm. The k-values at 405 nm were found to increase from 0.0018 to 0.0072 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a high-resolution time-of-flight aerosol mass spectrometer (H-ToF-AMS) also increased with increasing initial NOx concentration. The RI-values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs) were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm). These results can be reasonably explained by the hypothesis that nitroaromatic compounds, such as nitrocresols, are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI-values, mass absorption cross sections of the toluene-SOAs at 405 nm were estimated to be 0.08–0.52 m2g−1 under typical conditions in an urban atmosphere during the daytime. These results indicate that light absorption by the SOAs potentially contributes to the radiation balance at ultraviolet wavelengths below ~400 nm, specifically when the mass concentrations of the anthropogenic SOAs are significant compared with other light-absorbing particles.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2018 ◽  
Vol 18 (16) ◽  
pp. 12141-12159 ◽  
Author(s):  
Sara D. Forestieri ◽  
Taylor M. Helgestad ◽  
Andrew T. Lambe ◽  
Lindsay Renbaum-Wolff ◽  
Daniel A. Lack ◽  
...  

Abstract. Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters >∼160 nm, the MAC and absorption Ångström exponent (AAE) values were independent of particle collapse while the single-scatter albedo increased. The MAC values for these larger particles were also size-independent. The mean MAC value at 532 nm for larger particles was 9.1±1.1 m2 g−1, about 17 % higher than that recommended by Bond and Bergstrom (2006), and the AAE was close to unity. Effective, theory-specific complex refractive index (RI) values are derived from the observations with two widely used methods: Lorenz–Mie theory and the Rayleigh–Debye–Gans (RDG) approximation. Mie theory systematically underpredicts the observed absorption cross sections at all wavelengths for larger particles (with x>0.9) independent of the complex RI used, while RDG provides good agreement. (The dimensionless size parameter x=πdp/λ, where dp is particle diameter and λ is wavelength.) Importantly, this implies that the use of Mie theory within air quality and climate models, as is common, likely leads to underpredictions in the absorption by BC, with the extent of underprediction depending on the assumed BC size distribution and complex RI used. We suggest that it is more appropriate to assume a constant, size-independent (but wavelength-specific) MAC to represent absorption by uncoated BC particles within models.


2015 ◽  
Vol 15 (22) ◽  
pp. 33675-33730
Author(s):  
X. Xu ◽  
W. Zhao ◽  
Q. Zhang ◽  
S. Wang ◽  
B. Fang ◽  
...  

Abstract. The optical properties and chemical composition of PM1.0 (particulate with an aerodynamic diameter of less than 1.0 μm) particles in a suburban environment (Huairou) near the mega-city Beijing were measured during the HOPE-J3A (Haze Observation Project Especially for Jing-Jin-Ji Area) field campaign. The campaign covered the period November 2014 to January 2015 during the winter coal heating season. The average and standard deviations for the extinction, scattering, absorption coefficients, and the aerosol single scattering albedo (SSA) at λ = 470 nm during the measurement period were 201 ± 240, 164 ± 202, 37 ± 43 Mm-1, and 0.80 ± 0.08, respectively. The mean mass scattering (MSE) and absorption (MAE) efficiencies were 4.77 ± 0.01 and 0.87 ± 0.03 m2g-1, respectively. Highly time-resolved air pollution episodes clearly show the dramatic evolution of the PM1.0 size distribution, extensive optical properties (extinction, scattering, and absorption coefficients) and intensive optical properties (single scattering albedo and complex refractive index) during haze formation, development and decline. Time periods were classified into three different pollution levels (clear, slightly polluted, and polluted) for further analysis. It was found that: (1) The diurnal patterns of the aerosol extinction, scattering, absorption coefficients, and SSA differed for the three pollution classes. (2) The real and imaginary part of complex refractive index (CRI) increased, while the SSA decreased from clear to polluted days. (3) The relative contributions of organic and inorganic species to observed aerosol composition changed significantly from clear to polluted days: the organic mass fraction decreased (50 to 43 %) while the proportion of sulfates, nitrates, and ammonium increased strongly (34 to 44 %). (4) The fractional contribution of chemical components to extinction coefficients was calculated by using the modified IMPROVE algorithm. Organic mass was the largest contributor (58 %) to the total extinction of PM1.0. When the air quality deteriorated, the change of the relative contribution of sulfate aerosol to the total extinction was small, but the contribution of nitrate aerosol increased significantly (from 17 % on clear days to 23 % on polluted days). (5) The observed mass scattering efficiencies increased consistently with the pollution extent, however, the observed mass absorption efficiencies increased consistently with increasing mass concentration in slightly pollution conditions, but decreased under polluted conditions.


2019 ◽  
Author(s):  
Zhe Jiang ◽  
Minzheng Duan ◽  
Huizheng Che ◽  
Wenxing Zhang ◽  
Teruyuki Nakajima ◽  
...  

Abstract. This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, two new sites of the sky radiometer network (SKYNET). The volume size distribution retrieved by V5.0 presented bimodal patterns with a 0.1–0.2 μm fine particle mode and a 5–6 μm coarse particle mode both over Qionghai and Yucheng. The differences of the volume size distributions between the two versions were very large for the coarse mode with a radius of over 5 μm. The mean values of single scattering albedo (SSA) at 500 nm retrieved from V5.0 were approximately 0.02 lower, but 0.03 higher than those from V4.2 in Qionghai and Yucheng, respectively. The average imaginary part of the complex refractive index (mi) retrieved from V5.0 at all wavelengths was systemically higher than those by V4.2 over Qionghai. Moreover, the differences between the real parts of the complex refractive index (mr) obtained using the two versions were within 4.25 % both at Yucheng and Qionghai. The seasonal variability of the aerosol properties over Qionghai and Yucheng were investigated based on SKYRAD.pack V5.0. The seasonal average SSA during the winter was larger than those in other seasons in Yucheng, while the lowest SSA values occurred in winter over Qionghai. Meanwhile, the mr showed a minimum in winter over both sites. The results can provide validation data in China for SKYNET to continue improving the data-processing and inversion method. The results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.


2014 ◽  
Vol 23 (04) ◽  
pp. 1450049 ◽  
Author(s):  
Zhongyi Guo ◽  
Keya Zhou ◽  
Anjun Zhang ◽  
Jung-Ho Lee

The optical properties of the various types of tapered silicon nanowires (SiNWs) have been investigated by the phase retrieving method of utilizing the experimental reflection spectra with the aid of the Kramers–Kronig (KK) relation. The effective refractive index (n) and the extinction coefficient (K) of each tapered SiNWs and combined silicon nanowires and microwires (CNMW) array samples can be obtained from concrete simulation by the KK relation. At the same time, we can also obtain the real part (ε′) and imaginary part (ε″) of the effective complex dielectric constant from the relation between the refractive index and the complex dielectric constant of samples. And the simulated results show that the relative material parameters (effective complex refractive index, effective complex dielectric function) can be modulated from a concrete material processing.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 961
Author(s):  
Tingting Lu ◽  
Mingqiang Huang ◽  
Weixiong Zhao ◽  
Changjin Hu ◽  
Xuejun Gu ◽  
...  

Aromatic secondary organic aerosol (SOA) particles are known to contribute to radiative forcing and light absorption of atmosphere. However, the complex refractive index (CRI), single-scattering albedo (SSA) and other optical parameters of aromatic SOA are not well understood. SOA generated from photooxidation of toluene with a variety concentration of ammonium sulfate ((NH4)2SO4) seed particles in a smog chamber were investigated in the current study. The real part CRI of toluene SOA without seeds derived and based on aerosol albedometer measurements is 1.486 ± 0.002 at λ = 470 nm, showing a good agreement with available experimental data, and its SSA was measured to be 0.92 ± 0.02 at λ = 470 nm, indicating that the SOA particles without seeds have strong scattering ability. The SSA of SOA formed in the presence of 300 μg/m3 (NH4)2SO4 seed was 0.81 ± 0.02 at λ = 470 nm, less than the SSA of SOA without seed. SSA of SOA decreased, while the imaginary part of CRI (k) of SOA increased with increasing concentration of (NH4)2SO4 seed, demonstrating that the adsorption capacity of SOA formed in the presence of (NH4)2SO4 seed is enhanced. Different from the carboxyl compounds measured in the SOA without seed, imidazoles with strong chromophores of C=N that are responsible for the light absorption were detected as the principal constituents of SOA formed in the presence of (NH4)2SO4 seed. These would provide valuable information for discussing the optics and components of aromatic SOA in the urban atmosphere containing a high concentration of (NH4)2SO4 fine particles.


2000 ◽  
Vol 122 (3) ◽  
pp. 517-524 ◽  
Author(s):  
S. S. Krishnan ◽  
K.-C. Lin ◽  
G. M. Faeth

Nonintrusive measurements of the optical properties of soot at visible wavelengths (351.2–800.0 nm) were completed for soot in the overfire region of large (2–7 kW) buoyant turbulent diffusion flames burning in still air at standard temperature and pressure, where soot properties are independent of position and characteristic flame residence time for a particular fuel. Soot from flames fueled with gaseous (acetylene, ethylene, propylene, and butadiene) and liquid (benzene, cyclohexane, toluene, and n-heptane) hydrocarbon fuels were studied. Scattering and extinction measurements were interpreted to find soot optical properties using the Rayleigh-Debye-Gans/polydisperse-fractal-aggregate theory after establishing that this theory provided good predictions of scattering patterns over the present test range. Effects of fuel type on soot optical properties were comparable to experimental uncertainties. Dimensionless extinction coefficients were relatively independent of wavelength for wavelengths of 400–800 nm and yielded a mean value of 8.4 in good agreement with earlier measurements. Present measurements of the refractive index function for absorption, Em, were in good agreement with earlier independent measurements of Dalzell and Sarofim and Stagg and Charalampopoulos. Present values of the refractive index function for scattering, Fm, however, only agreed with these earlier measurements for wavelengths of 400–550 nm but otherwise increased with increasing wavelength more rapidly than the rest. The comparison between present and earlier measurements of the real and imaginary parts of the complex refractive index was similar to Em and Fm.[S0022-1481(00)02203-9]


2010 ◽  
Vol 3 (2) ◽  
pp. 735-768
Author(s):  
B. Aouizerats ◽  
O. Thouron ◽  
P. Tulet ◽  
M. Mallet ◽  
L. Gomes ◽  
...  

Abstract. Obtaining a good description of aerosol optical properties for a physically and chemically complex evolving aerosol is computationally very expensive at present. The goal of this work is to propose a new numerical module computing the optical properties for complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models. This method aims to compute the optical properties online as a function of a given complex refractive index deduced from the aerosol chemical composition and the size parameters corresponding to the particles. The construction of look-up tables from the imaginary and the real part of the complex refractive index and size parameters will also be explained. This approach is validated for observations acquired during the EUCAARI campaign on the Cabauw tower during May 2008 and its computing cost is also estimated. These comparisons show that the module manages to reproduce the scattering and absorbing behaviour of the aerosol during most of the fifteen-day period of observation with a very cheap computationally cost.


Sign in / Sign up

Export Citation Format

Share Document