scholarly journals Observations of tropical rain with a polarimetric X-band radar: first results from the CHUVA campaign

2012 ◽  
Vol 5 (1) ◽  
pp. 1717-1761
Author(s):  
M. Schneebeli ◽  
J. Sakuragi ◽  
T. Biscaro ◽  
C. F. Angelis ◽  
I. Carvalho da Costa ◽  
...  

Abstract. A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with additional sensors like a Ka-band vertically pointing frequency modulated continuous wave (FMCW) radar and three laser disdrometers. The disdrometers as well as the FMCW radar are capable of measuring the rain drop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This set-up allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. In the first campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps is being analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured in a distance of 20 km to the radar.

2012 ◽  
Vol 5 (9) ◽  
pp. 2183-2199 ◽  
Author(s):  
M. Schneebeli ◽  
J. Sakuragi ◽  
T. Biscaro ◽  
C. F. Angelis ◽  
I. Carvalho da Costa ◽  
...  

Abstract. A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with three additional laser disdrometers. The disdrometers are capable of measuring the raindrop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This set-up allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. For the campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps was analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured at a distance of 20 km from the radar. Radome attenuation reached values up to 14 dB which was found to be consistent with an empirical radome attenuation vs. rain intensity relation that was previously developed for the same radar type. In contrast to previous work, our results suggest that radome attenuation should be estimated individually for every view direction of the radar in order to obtain homogenous reflectivity fields.


Abstract Using NOAA’s S-band High Power Snow-Level Radar, HPSLR, a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized Gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion, w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter, Dm, from the measured reflectivity, Z, produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, NC. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.


Author(s):  
Akbar Eslami

The recent developments in the remote sensing technologies have resulted in large amounts of data transmitted from spaceborne sensors. To keep up with the volume, speed, and variety of these data, new data acquisition and visualization systems need to be developed. This chapter focuses on some design and development considerations for a real-time data acquisition and visualization of X-band in a frequency-modulated continuous wave (FMCW) radar. Relevant issues such as high-speed network, parallel data processing system, and large-scale storage system are discussed. Ideally, the acquisition system should be capable of concurrent processing at low cost and visualization technique should be in the same time scale with other conventional 2D visualization of X-band weather radars. Benefits of this type of radar are that it is not just safe and inexpensive, but also serves as a means in filling in gaps of higher-powered pulse-doppler radars when used in conjunction with them.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1144
Author(s):  
Daewoong Cha ◽  
Sohee Jeong ◽  
Minwoo Yoo ◽  
Jiyong Oh ◽  
Dongseog Han

In autonomous driving vehicles, the emergency braking system uses lidar or radar sensors to recognize the surrounding environment and prevent accidents. The conventional classifiers based on radar data using deep learning are single input structures using range–Doppler maps or micro-Doppler. Deep learning with a single input structure has limitations in improving classification performance. In this paper, we propose a multi-input classifier based on convolutional neural network (CNN) to reduce the amount of computation and improve the classification performance using the frequency modulated continuous wave (FMCW) radar. The proposed multi-input deep learning structure is a CNN-based structure using a distance Doppler map and a point cloud map as multiple inputs. The classification accuracy with the range–Doppler map or the point cloud map is 85% and 92%, respectively. It has been improved to 96% with both maps.


2008 ◽  
Vol 25 (5) ◽  
pp. 729-741 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract The recent advances in attenuation correction methodology are based on the use of a constraint represented by the total amount of the attenuation encountered along the path shared over each range bin in the path. This technique is improved by using the inner self-consistency of radar measurements. The full self-consistency methodology provides an optimization procedure for obtaining the best estimate of specific and cumulative attenuation and specific and cumulative differential attenuation. The main goal of the study is to examine drop size distribution (DSD) retrieval from X-band radar measurements after attenuation correction. A new technique for estimating the slope of a linear axis ratio model from polarimetric radar measurements at attenuated frequencies is envisioned. A new set of improved algorithms immune to variability in the raindrop shape–size relation are presented for the estimation of the governing parameters characterizing a gamma raindrop size distribution. Simulations based on the use of profiles of gamma drop size distribution parameters obtained from S-band observations are used for quantitative analysis. Radar data collected by the NOAA/Earth System Research Laboratory (ESRL) X-band polarimetric radar are used to provide examples of the DSD parameter retrievals using attenuation-corrected radar measurements. Retrievals agree fairly well with disdrometer data. The radar data are also used to observe the prevailing shape of raindrops directly from the radar measurements. A significant result is that oblateness of drops is bounded between the two shape models of Pruppacher and Beard, and Beard and Chuang, the former representing the upper boundary and the latter the lower boundary.


2012 ◽  
Vol 29 (10) ◽  
pp. 1435-1454 ◽  
Author(s):  
Jason Fritz ◽  
V. Chandrasekar

Abstract The translation of radar data from one frequency to another based on electromagnetic absorption and scattering models has been used to convert S-band measurements to higher frequencies, such as those within the X or Ku bands, in order to create realistic simulations. As the target frequency of simulations for weather radar increase to X band and above, the size of large raindrops and hail either approach or exceed the radar wavelength, resulting in a radar cross section that is no longer in the linear Rayleigh region. The Mie solution to scattering models is then required. With the advent of dual-polarization systems, a more complete characterization of the effect of precipitation on radar is possible in order to improve model effectiveness. However, typical curve- or surface-fitting methods still have limitations as particle size increases. A more robust solution is presented here in the form of a neural network that incorporates the nonlinear relationship among various polarimetric observation variables and the radar wavelength and look angle. Thus, high-frequency observations of a convective storm containing hail can be simulated using polarimetric ground radar measurements. Adequate polarimetric data from hail storms at high frequencies do not exist, however, so network outputs for this case can only be compared to theoretical observations. An application of the simulation procedure to characterize the effect of precipitation on spaceborne synthetic aperture radar (SAR) using ground observations is presented.


2014 ◽  
Vol 31 (11) ◽  
pp. 2442-2450 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Patrick C. Kennedy ◽  
Robert Cifelli

AbstractCorrecting observed polarimetric radar variables for attenuation and differential attenuation effects in rain is important for meteorological applications involving measurements at attenuating frequencies such as those at X band. The results of estimating the coefficients in the correction-scheme relations from dual-wavelength polarimetric radar measurements of rainfall involving attenuating and nonattenuating frequencies are described. Such coefficients found directly from measurements are essentially free from different assumptions about drop shapes, drop size distributions, and/or relations between different radar variables that are typically used in many attenuation and differential attenuation correction schemes. Experimentally based estimates derived using dual-wavelength radar measurements conducted during a project in northern Colorado indicate values of the coefficients in the attenuation–differential phase quasi-linear relations at X band in the approximate range of 0.20–0.31 dB deg−1. The corresponding coefficients in the differential attenuation–differential phase relations are in the range of 0.052–0.065 dB deg−1.


2012 ◽  
Vol 4 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Martin Jahn ◽  
Andreas Stelzer

This paper presents a frequency-modulated continuous-wave (FMCW) radar operating at 120 GHz, which features silicon–germanium (SiGe) chips that employ HBTs with 320 GHz fmax. The chipset comprises a fundamental-wave signal-generation chip with a voltage-controlled oscillator (VCO) that provides frequencies between 114 and 130 GHz and a corresponding dual–transceiver (TRX) chip that supports monostatic and quasi-monostatic radar configurations. The cascode amplifiers used in the TRX chip were characterized in separate test chips and yielded peak small-signal gains of approximately 15 dB. Finally, a quasi-monostatic two-channel FMCW radar frontend with on-board differential microstrip antennas was built on an RF substrate. FMCW radar measurements with frequency chirps from 116 to 123 GHz verified the functionality of the designed radar sensor.


2008 ◽  
Vol 16 ◽  
pp. 27-32 ◽  
Author(s):  
F. Teschl ◽  
W. L. Randeu ◽  
M. Schönhuber ◽  
R. Teschl

Abstract. Polarimetric radar variables of rainfall events, like differential reflectivity ZDR, or specific differential phase KDP, are better suited for estimating rain rate R than just the reflectivity factor for horizontally polarized waves, ZH. A variety of physical and empirical approaches exist to estimate the rain rate from polarimetric radar observables. The relationships vary over a wide range with the location and the weather conditions. In this study, the polarimetric radar variables were simulated for S-, C- and X-band wavelengths in order to establish radar rainfall estimators for the alpine region of the form R(KDP), R(ZH, ZDR), and R(KDP), ZDR. For the simulation drop size distributions of hundreds of 1-minute-rain episodes were obtained from 2D-Video-Distrometer measurements in the mountains of Styria, Austria. The sensitivity of the polarimetric variables to temperature is investigated, as well as the influence of different rain drop shape models – including recently published ones – on radar rainfall estimators. Finally it is shown how the polarimetric radar variables change with the elevation angle of the radar antenna.


2014 ◽  
Vol 6 (3-4) ◽  
pp. 435-444 ◽  
Author(s):  
Pavlo Molchanov ◽  
Ronny I.A. Harmanny ◽  
Jaco J.M. de Wit ◽  
Karen Egiazarian ◽  
Jaakko Astola

The popularity of small unmanned aerial vehicles (UAVs) is increasing. Therefore, the importance of security systems able to detect and classify them is increasing as well. In this paper, we propose a new approach for UAVs classification using continuous wave radar or high pulse repetition frequency (PRF) pulse radars. We consider all steps of processing required to make a decision out of the raw radar data. Before the classification, the micro-Doppler signature is filtered and aligned to compensate the Doppler shift caused by the target's body motion. Then, classification features are extracted from the micro-Doppler signature in order to represent information about class at a lower dimension space. Eigenpairs extracted from the correlation matrix of the signature are used as informative features for classification. The proposed approach is verified on real radar measurements collected with X-band radar. Planes, quadrocopter, helicopters, and stationary rotors as well as birds are considered for classification. Moreover, a possibility of distinguishing different number of rotors is considered. The obtained results show the effectiveness of the proposed approach. It provides the capability of correct classification with a probability of around 92%.


Sign in / Sign up

Export Citation Format

Share Document