scholarly journals High concentrations of N<sub>2</sub>O<sub>5</sub> and NO<sub>3</sub> observed in daytime with a TD-CIMS: chemical interference or a real atmospheric phenomenon?

2013 ◽  
Vol 6 (4) ◽  
pp. 7473-7504
Author(s):  
X. Wang ◽  
T. Wang ◽  
C. Yan ◽  
Y. J. Tham ◽  
L. Xue ◽  
...  

Abstract. Dinitrogen pentoxide (N2O5) and the nitrate radical (NO3) play important roles in atmospheric chemistry, yet accurate measurements of their concentrations remain challenging. A thermal dissociation chemical ionization mass spectrometer (TD-CIMS) was deployed to an urban site in Hong Kong to measure the sum of N2O5 and NO3 in autumn 2010. To our surprise, very high concentrations of N2O5 + NO3 were frequently observed in daytime, with mixing ratios in the range of 200–1000 pptv. To investigate this unusual phenomenon, various interference tests and measurements with different instrument configuration were conducted. It was found that peroxy acetyl nitrate (PAN) contributed to measurable signals at 62 amu, and more importantly, this interference increased significantly with co-existence of NO2. Nitric acid (HNO3), on the other hand, had little interference to the detection of N2O5/NO3 via the NO3− ion in our TD-CIMS. According to the test results, the interference from PAN and NO2 could have contributed to 30–50% of the average daytime (12:00–16:00 LT) N2O5 + NO3 signal at our site. However, evidence exists for the presence of elevated daytime N2O5, in addition to the daytime signal at 62 amu. This includes: (1) daytime N2O5 measured via the I(N2O5)− cluster ion with an unheated inlet, which subjects to minimum interferences, and (2) observation of elevated daytime ClNO2 (a product of N2O5 hydrolysis) during a follow-up study. In view of the difficulty in accurately quantifying the contribution from the interferences of PAN and NO2 and un-tested potential interfering chemicals in the real atmosphere, we caution the use of 62 amu in the TD-CIMS for measuring ambient N2O5 in a high NOx environment like Hong Kong. Additional studies are needed to re-examine the daytime issue using other measurement techniques.

2014 ◽  
Vol 7 (1) ◽  
pp. 1-12 ◽  
Author(s):  
X. Wang ◽  
T. Wang ◽  
C. Yan ◽  
Y. J. Tham ◽  
L. Xue ◽  
...  

Abstract. Dinitrogen pentoxide (N2O5) and the nitrate radical (NO3) play important roles in atmospheric chemistry, yet accurate measurements of their concentrations remain challenging. A thermal dissociation chemical ionization mass spectrometer (TD-CIMS) was deployed to an urban site in Hong Kong to measure the sum of N2O5 and NO3 in autumn 2010 based on the signals of NO3− at 62 amu which has also been adopted in previous studies reported in literature. To our surprise, very large signals of N2O5 + NO3 were frequently observed at 62 amu in the daytime, with equivalent N2O5 + NO3 mixing ratios in the range of 200–1000 pptv. To investigate this unusual phenomenon, various interference tests and measurements with different instrument configuration were conducted. It was found that peroxy acetyl nitrate (PAN) contributed to measurable signals at 62 amu, and more importantly, this interference increased significantly with co-existence of NO2. Nitric acid (HNO3), on the other hand, had little interference to the detection of N2O5/NO3 via the NO3− ion in our TD-CIMS. According to the test results, the interference from PAN and NO2 could have contributed to 30–50% of the average daytime (12:00–16:00, local time) N2O5 + NO3 signal at our site. On the other hand, evidence exists for the presence of elevated daytime N2O5, in addition to the daytime signal at 62 amu. This includes (1) daytime N2O5 measured via the I(N2O5)− cluster ion with an unheated inlet, which was subjected to minimum interferences, and (2) observation of elevated daytime ClNO2 (a product of N2O5 hydrolysis) during a follow-up study. In view of the difficulty in accurately quantifying the contribution from the interferences of PAN and NO2 and untested potential interfering chemicals in the real atmosphere, we caution the use of 62 amu in the TD-CIMS for measuring ambient N2O5 in a high NOx environment like Hong Kong. Additional studies are needed to re-examine the daytime issue using other measurement techniques.


2018 ◽  
Author(s):  
Wei Zhou ◽  
Jian Zhao ◽  
Bin Ouyang ◽  
Archit Mehra ◽  
Weiqi Xu ◽  
...  

Abstract. The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has a significant impact on both nocturnal particulate nitrate formation and photochemistry the following day through photolysis of nitryl chloride (ClNO2), yet these processes in highly polluted urban areas remain poorly understood. Here we present measurements of gas-phase N2O5 and ClNO2 by high-resolution time-of-flight chemical ionization mass spectrometers (ToF-CIMS) during summer in urban Beijing, China as part of the Air Pollution and Human Health (APHH) campaign. N2O5 and ClNO2 show large day-to-day variations with average (±1σ) mixing ratios of 79.2 ± 157.1 and 174.3 ± 262.0 pptv, respectively. High reactivity of N2O5, with τ (N2O5)−1 ranging from 0.20 × 10−2 to 1.46 × 10−2 s−1, suggests active nocturnal chemistry and a large nocturnal nitrate formation potential via N2O5 heterogeneous uptake. The life time of N2O5, τ(N2O5), decreases rapidly as the increase of aerosol surface area, yet it varies differently as a function of relative humidity with the highest value peaking at ~ 40 %. The N2O5 uptake coefficients estimated from the product formation rates of ClNO2 and particulate nitrate are in the range of 0.017–0.19, corresponding to direct N2O5 loss rates of 0.00044–0.0034 s−1. Further analysis indicates that the fast N2O5 loss in the nocturnal boundary layer in urban Beijing is mainly attributed to its indirect loss via NO3, for example through the reactions with volatile organic compounds and NO, while the contribution of heterogeneous uptake of N2O5 is comparably small (7–33 %). High ClNO2 yields ranging from 0.10 to 0.35 were also observed which might have important implications for air quality by affecting nitrate and ozone formation.


2017 ◽  
Author(s):  
Yi Ming Qin ◽  
Hao Bo Tan ◽  
Yong Jie Li ◽  
Misha I. Schurman ◽  
Fei Li ◽  
...  

Abstract. Particulate matter (PM) pollution on the peripheries of rapidly expanding megacities in China can be as serious as in the cities due to direct emission and transport of primary PM from cities and effective formation of secondary PM. To investigate the emission and formation of PM on the periphery of Guangzhou (a megacity in southern China), a suite of real-time instruments were deployed at Panyu, downwind of Guangzhou, for PM measurements from November to December 2014. Dominated by organics, PM1 (particles with diameter less than 1 μm) concentrations in Panyu were higher (average ~ 55.4 μg/m3) than those in nearby cities such as Hong Kong and Shenzhen. Five sources for organic aerosols (OA) were resolved by positive matrix factorization (PMF) analysis with the multilinear engine (ME-2). These sources are hydrocarbon-like organic aerosol (HOA), cooking organic aerosol (COA), biomass burning related organic aerosol (BBOA), as well as semi-volatile oxygenated organic aerosol (SVOOA) and low-volatile oxygenated organic aerosol (LVOOA). The use of the COA mass spectrum obtained in our earlier study at a urban site in Hong Kong as a constraining factor in ME-2 produced the most interpretable results for the Panyu dataset. Freshly emitted HOA contributed 40 % to the high concentrations of organics at night. The mass concentration of SOA (SVOOA + LVOOA) continuously increased as odd oxygen (Ox = O3 + NO2) increased during daytime, attributable to the secondary production of PM facilitated by photochemistry. The SOA-to-Ox ratio was higher than those reported in previous studies in North America (covering the period from spring to summer), indicating efficient photochemical production of SOA even in late autumn and early winter at this subtropical downwind site. The efficient SOA formation during daytime was likely fueled by the sufficient SOA precursors in the atmosphere. The large input of NOx, which tracked well with HOA from automobile emissions, resulted in the significant formation of nitrate in both daytime and nighttime. Strong correlations between particulate nitrate and excess ammonium ([NH4+]/[SO42−] − 1.5) × [SO42−]) were observed. Higher partitioning of nitrate into the gas phase was found in November than in December, likely due to the lower temperatures in December. Results from this study suggest that there is much room to mitigate the PM pollution in urbanized areas such as Guangzhou, as well as their peripheries, by reductions in traffic-related pollutants.


2013 ◽  
Vol 13 (3) ◽  
pp. 1129-1139 ◽  
Author(s):  
G. J. Phillips ◽  
N. Pouvesle ◽  
J. Thieser ◽  
G. Schuster ◽  
R. Axinte ◽  
...  

Abstract. We describe measurements of peroxyacetyl nitrate (CH3C(O)O2NO2, PAN) and peroxyacetic acid (CH3C(O)OOH, PAA) in the Boreal forest using iodide chemical ionization mass spectrometry (ICIMS). The measurements were made during the Hyytiälä United Measurement of Photochemistry and Particles – Comprehensive Organic Particle and Environmental Chemistry (HUMPPA-COPEC-2010) measurement intensive. Mixing ratios of PAN and PAA were determined by measuring the acetate ion signal (CH3C(O)O−, m/z = 59) resulting from reaction of CH3C(O)O2 (from the thermal dissociation of PAN) or CH3C(O)OOH with iodide ions using alternatively heated and ambient temperature inlet lines. During some periods of high temperature (~ 30 °C) and low NOx (< 1 ppbv), PAA mixing ratios were similar to, or exceeded those of PAN and thus contributed a significant fraction of the total acetate signal. PAA is thus a potential interference for ICIMS measurements of PAN, and especially eddy covariance flux measurements in environments where the PAA flux is likely to be a significant proportion of the (short timescale) acetate ion variability. Within the range of mixing ratios of NOx measured during HUMPPA-COPEC, the modelled ratio of PAA-to-PAN was found to be sensitive to temperature (through the thermal decomposition rate of PAN) and the HO2 mixing ratio, thus providing some constraint to estimates of photochemical activity and oxidation rates in the Boreal environment.


2012 ◽  
Vol 5 (2) ◽  
pp. 2529-2565 ◽  
Author(s):  
X. Ren ◽  
J. Mao ◽  
W. H. Brune ◽  
C. A. Cantrell ◽  
R. L. Mauldin III ◽  
...  

Abstract. The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by UV light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 105 cm−3 with a correlation coefficient, r2 = 0.72 for OH and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol−1) with a correlation coefficient, r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.


2018 ◽  
Vol 18 (16) ◽  
pp. 11581-11597 ◽  
Author(s):  
Wei Zhou ◽  
Jian Zhao ◽  
Bin Ouyang ◽  
Archit Mehra ◽  
Weiqi Xu ◽  
...  

Abstract. The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has a significant impact on both nocturnal particulate nitrate formation and photochemistry on the following day through the photolysis of nitryl chloride (ClNO2), yet these processes in highly polluted urban areas remain poorly understood. Here we present measurements of gas-phase N2O5 and ClNO2 by high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) during summer in urban Beijing, China as part of the Air Pollution and Human Health (APHH) campaign. N2O5 and ClNO2 show large day-to-day variations with average (±1σ) mixing ratios of 79.2±157.1 and 174.3±262.0 pptv, respectively. High reactivity of N2O5, with τ (N2O5)−1 ranging from 0.20 × 10−2 to 1.46 × 10−2 s−1, suggests active nocturnal chemistry and a large nocturnal nitrate formation potential via N2O5 heterogeneous uptake. The lifetime of N2O5, τ (N2O5), decreases rapidly with the increase in aerosol surface area, yet it varies differently as a function of relative humidity with the highest value peaking at ∼ 40 %. The N2O5 uptake coefficients estimated from the product formation rates of ClNO2 and particulate nitrate are in the range of 0.017–0.19, corresponding to direct N2O5 loss rates of 0.00044–0.0034 s−1. Further analysis indicates that the fast N2O5 loss in the nocturnal boundary layer in urban Beijing is mainly attributed to its indirect loss via NO3, for example through the reactions with volatile organic compounds and NO, while the contribution of the heterogeneous uptake of N2O5 is comparably small (7–33 %). High ClNO2 yields ranging from 0.10 to 0.35 were also observed, which might have important implications for air quality by affecting nitrate and ozone formation.


2014 ◽  
Vol 7 (6) ◽  
pp. 5953-6019
Author(s):  
T. W. Tokarek ◽  
J. A. Huo ◽  
C. A. Odame-Ankrah ◽  
D. Hammoud ◽  
Y. M. Taha ◽  
...  

Abstract. The peroxycarboxylic nitric anhydrides (PANs, molecular formula RC(O)O2NO2) can readily be observed by gas chromatography coupled to electron capture detection (PAN-GC). Calibration of a PAN-GC remains a challenge because the response factors (RF's) differ for each of the PANs and because their synthesis in sufficiently high purity is non-trivial, in particular for PANs containing unsaturated side chains. In this manuscript, a PAN-GC and its calibration using diffusion standards, whose output was quantified by blue diode laser thermal dissociation cavity ring-down spectroscopy (TD-CRDS), are described. The PAN-GC peak areas correlated linearly with total peroxy nitrate (ΣPN) mixing ratios measured by TD-CRDS (r > 0.96). Accurate determination of RF's required the concentrations of PAN impurities in the synthetic standards to be subtracted from ΣPN. The PAN-GC and its TD-CRDS calibration method were deployed during ambient air measurement campaigns in Abbotsford, BC, from 20 July to 5 August, 2012, and during the Fort McMurray Oil Sands Strategic Investigation of Local Sources (FOSSILS) campaign at the AMS13 ground site in Fort McKay, AB, from 10 August to 5 September 2013. For the Abbotsford data set, the PAN-GC mixing ratios were compared and agreed with those determined in parallel by thermal dissociation chemical ionization mass spectrometry (TD-CIMS). Advantages and disadvantages of the PAN measurement techniques used in this work and the utility of TD-CRDS as a PAN-GC calibration method are discussed.


2007 ◽  
Vol 7 (3) ◽  
pp. 9139-9181
Author(s):  
G. M. Wolfe ◽  
J. A. Thornton ◽  
V. Faye McNeill ◽  
D. A. Jaffe ◽  
D. Reidmiller ◽  
...  

Abstract. We present month-long observations of speciated acyl peroxy nitrates (APNs), including PAN, PPN, MPAN, APAN, and the sum of PiBN and PnBN, measured at the Mount Bachelor Observatory (MBO) as part of the INTEX-B collaborative field campaign during spring 2006. APN abundances, measured by thermal dissociation-chemical ionization mass spectrometry (TD-CIMS), are discussed in terms of differing contributions from the boundary layer and the free troposphere and in the context of previous APN measurements in the NE Pacific region. PAN mixing ratios range from 11 to 3955 pptv, with a mean value of 334 pptv for the full measurement period. PPN is linearly correlated with PAN (r2=0.96), with an average abundance of 6.5% relative to PAN; other APNs are generally <1% of PAN. Diurnal cycles and relationships of APNs with ozone reveal a gradient in hydrocarbon chemistry between the boundary layer and the free troposphere. On average, the highest levels of APNs, ozone and PPN/PAN are found in free tropospheric air masses, suggesting that this site is strongly influenced by distant pollution sources. To estimate the impact of long-range transport of Asian pollution on atmospheric composition at MBO, we perform a detailed analysis utilizing HYSPLIT back trajectories. This analysis suggests that trans-Pacific transport of Asian pollution leads to substantial increases in APN and ozone mixing ratios at MBO, especially when transport occurs via the free troposphere. The ensemble of trajectories indicate that Asian-influenced free tropospheric air was sampled in ~16% of our data and contained a median PAN mixing ratio double that of the full dataset.


2015 ◽  
Vol 15 (16) ◽  
pp. 22597-22636
Author(s):  
Z. H. Ling ◽  
H. Guo ◽  
I. J. Simpson ◽  
S. M. Saunders ◽  
S. H. M. Lam ◽  
...  

Abstract. Alkyl nitrates (RONO2) were measured concurrently at a mountain site (TMS) and an urban site (TW) at the foot of the same mountain in Hong Kong from September to November 2010, when high O3 mixing ratios were frequently observed. The abundance and temporal patterns of five C1–C4 RONO2 and their parent hydrocarbons (RH), the RONO2/RH ratios and photochemical age of air masses at TMS differed from those at TW, reflecting different contributions of direct emissions and secondary formation of RONO2 at the two sites. Relative to 2-BuONO2/n-butane, the measured ratios of C1–C2 RONO2/RH at the two sites exhibited significant positive deviations from pure photochemical (PP) curves and background initial ratio (BIR) curves obtained from laboratory kinetic data, suggesting that background mixing ratios had a significant influence on the RONO2 and RH distributions. In contrast to the C1–C2 RONO2/RH ratios, the evolution for the measured ratios of C3 RONO2/RH to 2-BuONO2/n-butane agreed well with the ratio distributions in the PP and BIR curves at the two sites. Furthermore, the ratios of 1-/2-PrONO2 and yields of 1- and 2-PrONO2 suggested that the C3 RONO2 were mainly from secondary formation at TMS, whereas secondary formation and other additional sources had a significant influence on C3 RONO2 mixing ratios at TW. The source apportionment results confirmed that secondary formation was the dominant contributor to all the RONO2 at TMS, while most of the RONO2 at TW were from secondary formation and biomass burning. The findings of the source apportionments and photochemical evolution of RONO2 are helpful to evaluate photochemical processing in Hong Kong using RONO2 as an indicator.


Sign in / Sign up

Export Citation Format

Share Document