scholarly journals New insight into the spatiotemporal variability and source apportionments of C<sub>1</sub>–C<sub>4</sub> alkyl nitrates in Hong Kong

2015 ◽  
Vol 15 (16) ◽  
pp. 22597-22636
Author(s):  
Z. H. Ling ◽  
H. Guo ◽  
I. J. Simpson ◽  
S. M. Saunders ◽  
S. H. M. Lam ◽  
...  

Abstract. Alkyl nitrates (RONO2) were measured concurrently at a mountain site (TMS) and an urban site (TW) at the foot of the same mountain in Hong Kong from September to November 2010, when high O3 mixing ratios were frequently observed. The abundance and temporal patterns of five C1–C4 RONO2 and their parent hydrocarbons (RH), the RONO2/RH ratios and photochemical age of air masses at TMS differed from those at TW, reflecting different contributions of direct emissions and secondary formation of RONO2 at the two sites. Relative to 2-BuONO2/n-butane, the measured ratios of C1–C2 RONO2/RH at the two sites exhibited significant positive deviations from pure photochemical (PP) curves and background initial ratio (BIR) curves obtained from laboratory kinetic data, suggesting that background mixing ratios had a significant influence on the RONO2 and RH distributions. In contrast to the C1–C2 RONO2/RH ratios, the evolution for the measured ratios of C3 RONO2/RH to 2-BuONO2/n-butane agreed well with the ratio distributions in the PP and BIR curves at the two sites. Furthermore, the ratios of 1-/2-PrONO2 and yields of 1- and 2-PrONO2 suggested that the C3 RONO2 were mainly from secondary formation at TMS, whereas secondary formation and other additional sources had a significant influence on C3 RONO2 mixing ratios at TW. The source apportionment results confirmed that secondary formation was the dominant contributor to all the RONO2 at TMS, while most of the RONO2 at TW were from secondary formation and biomass burning. The findings of the source apportionments and photochemical evolution of RONO2 are helpful to evaluate photochemical processing in Hong Kong using RONO2 as an indicator.

2016 ◽  
Vol 16 (13) ◽  
pp. 8141-8156 ◽  
Author(s):  
Zhenhao Ling ◽  
Hai Guo ◽  
Isobel Jane Simpson ◽  
Sandra Maria Saunders ◽  
Sean Ho Man Lam ◽  
...  

Abstract. C1–C4 alkyl nitrates (RONO2) were measured concurrently at a mountain site, Tai Mo Shan (TMS), and an urban site, Tsuen Wan (TW), at the base of the same mountain in Hong Kong from September to November 2010. Although the levels of parent hydrocarbons were much lower at TMS (p  <  0.05), similar alkyl nitrate levels were found at both sites regardless of the elevation difference, suggesting various source contributions of alkyl nitrates at the two sites. Prior to using a positive matrix factorization (PMF) model, the data at TW were divided into "meso" and "non-meso" scenarios for the investigation of source apportionments with the influence of mesoscale circulation and regional transport, respectively. Secondary formation was the prominent contributor of alkyl nitrates in the meso scenario (60 ± 2 %, 60.2 ± 1.2 pptv), followed by biomass burning and oceanic emissions, while biomass burning and secondary formation made comparable contributions to alkyl nitrates in the non-meso scenario, highlighting the strong emissions of biomass burning in the inland Pearl River delta (PRD) region. In contrast to TW, the alkyl nitrate levels measured at TMS mainly resulted from the photooxidation of the parent hydrocarbons at TW during mesoscale circulation, i.e., valley breezes, corresponding to 52–86 % of the alkyl nitrate levels at TMS. Furthermore, regional transport from the inland PRD region made significant contributions to the levels of alkyl nitrates (∼  58–82 %) at TMS in the non-meso scenario, resulting in similar levels of alkyl nitrates observed at the two sites. The simulation of secondary formation pathways using a photochemical box model found that the reaction of alkyl peroxy radicals (RO2) with nitric oxide (NO) dominated the formation of RONO2 at both sites, and the formation of alkyl nitrates contributed negatively to O3 production, with average reduction rates of 4.1 and 4.7 pptv pptv−1 at TMS and TW, respectively.


2009 ◽  
Vol 9 (16) ◽  
pp. 6217-6227 ◽  
Author(s):  
T. Wang ◽  
X. L. Wei ◽  
A. J. Ding ◽  
C. N. Poon ◽  
K. S. Lam ◽  
...  

Abstract. Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO) data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2) column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs) as well) in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81%) to the rate of increase in "total ozone" at an urban site in Hong Kong, suggesting the need to consider distant sources when developing long-term strategies to mitigate local ozone pollution.


2014 ◽  
Vol 7 (1) ◽  
pp. 1-12 ◽  
Author(s):  
X. Wang ◽  
T. Wang ◽  
C. Yan ◽  
Y. J. Tham ◽  
L. Xue ◽  
...  

Abstract. Dinitrogen pentoxide (N2O5) and the nitrate radical (NO3) play important roles in atmospheric chemistry, yet accurate measurements of their concentrations remain challenging. A thermal dissociation chemical ionization mass spectrometer (TD-CIMS) was deployed to an urban site in Hong Kong to measure the sum of N2O5 and NO3 in autumn 2010 based on the signals of NO3− at 62 amu which has also been adopted in previous studies reported in literature. To our surprise, very large signals of N2O5 + NO3 were frequently observed at 62 amu in the daytime, with equivalent N2O5 + NO3 mixing ratios in the range of 200–1000 pptv. To investigate this unusual phenomenon, various interference tests and measurements with different instrument configuration were conducted. It was found that peroxy acetyl nitrate (PAN) contributed to measurable signals at 62 amu, and more importantly, this interference increased significantly with co-existence of NO2. Nitric acid (HNO3), on the other hand, had little interference to the detection of N2O5/NO3 via the NO3− ion in our TD-CIMS. According to the test results, the interference from PAN and NO2 could have contributed to 30–50% of the average daytime (12:00–16:00, local time) N2O5 + NO3 signal at our site. On the other hand, evidence exists for the presence of elevated daytime N2O5, in addition to the daytime signal at 62 amu. This includes (1) daytime N2O5 measured via the I(N2O5)− cluster ion with an unheated inlet, which was subjected to minimum interferences, and (2) observation of elevated daytime ClNO2 (a product of N2O5 hydrolysis) during a follow-up study. In view of the difficulty in accurately quantifying the contribution from the interferences of PAN and NO2 and untested potential interfering chemicals in the real atmosphere, we caution the use of 62 amu in the TD-CIMS for measuring ambient N2O5 in a high NOx environment like Hong Kong. Additional studies are needed to re-examine the daytime issue using other measurement techniques.


2013 ◽  
Vol 6 (4) ◽  
pp. 7473-7504
Author(s):  
X. Wang ◽  
T. Wang ◽  
C. Yan ◽  
Y. J. Tham ◽  
L. Xue ◽  
...  

Abstract. Dinitrogen pentoxide (N2O5) and the nitrate radical (NO3) play important roles in atmospheric chemistry, yet accurate measurements of their concentrations remain challenging. A thermal dissociation chemical ionization mass spectrometer (TD-CIMS) was deployed to an urban site in Hong Kong to measure the sum of N2O5 and NO3 in autumn 2010. To our surprise, very high concentrations of N2O5 + NO3 were frequently observed in daytime, with mixing ratios in the range of 200–1000 pptv. To investigate this unusual phenomenon, various interference tests and measurements with different instrument configuration were conducted. It was found that peroxy acetyl nitrate (PAN) contributed to measurable signals at 62 amu, and more importantly, this interference increased significantly with co-existence of NO2. Nitric acid (HNO3), on the other hand, had little interference to the detection of N2O5/NO3 via the NO3− ion in our TD-CIMS. According to the test results, the interference from PAN and NO2 could have contributed to 30–50% of the average daytime (12:00–16:00 LT) N2O5 + NO3 signal at our site. However, evidence exists for the presence of elevated daytime N2O5, in addition to the daytime signal at 62 amu. This includes: (1) daytime N2O5 measured via the I(N2O5)− cluster ion with an unheated inlet, which subjects to minimum interferences, and (2) observation of elevated daytime ClNO2 (a product of N2O5 hydrolysis) during a follow-up study. In view of the difficulty in accurately quantifying the contribution from the interferences of PAN and NO2 and un-tested potential interfering chemicals in the real atmosphere, we caution the use of 62 amu in the TD-CIMS for measuring ambient N2O5 in a high NOx environment like Hong Kong. Additional studies are needed to re-examine the daytime issue using other measurement techniques.


2016 ◽  
Vol 13 (4) ◽  
pp. 665 ◽  
Author(s):  
Ka Shing Chow ◽  
X. H. Hilda Huang ◽  
Jian Zhen Yu

Environmental context Nitroaromatic compounds constitute an important portion of brown carbon and thereby contribute to the light-absorbing properties of atmospheric aerosols. We report their abundance in Hong Kong over 3 years and show that they were mainly associated with aged biomass burning particles. Knowledge of the abundance and sources of nitroaromatic compounds could assist in evaluating their contribution to brown carbon and in apportioning secondary organic aerosols from biomass burning sources. Abstract Biomass burning is a major source of atmospheric aerosols on both global and regional scales. Among the large number of unidentified organic compounds related to biomass burning, nitroaromatic compounds (NACs) have drawn attention because of their UV light-absorbing ability. In this study, an analytical method based on liquid chromatography–mass spectrometry was used to quantify a group of NACs (nitrophenol, methylnitrophenols, dimethylnitrophenol, nitrocatechol and methylnitrocatechols) in aerosol samples. The nitrocatechol–metal complex interference, sample matrix effects, sample stability, precision and reproducibility were investigated. The method detection limits ranged from 0.10 to 0.23ngmL–1 and the recoveries for the target NACs were in the range of 96–102%. The method was applied to a total of 184 ambient PM2.5 samples (particulate matter of 2.5µm or less in aerodynamic diameter) collected at an urban site in Hong Kong over 3 years (2010–2012). The NACs quantified showed a distinct seasonal variation with higher concentrations in autumn and winter (3.6–21.0ngm–3), coinciding with more biomass burning activities coming from the regions west and north-east to Hong Kong, and lower levels during spring and summer (0.3–3.8ngm–3). The good correlations between NACs and levoglucosan (R=0.82), a known biomass burning tracer compound, support the common origin from biomass burning. Moderate to good correlations between NACs and nitrate suggest that they might be products of secondary formation processes involving the same precursor gases (e.g. NOx). Additional lines of circumstantial evidence were also found and presented in the paper to support secondary formation derived from biomass burning as the main contributing source of NACs.


2021 ◽  
Vol 270 ◽  
pp. 116285
Author(s):  
Lewei Zeng ◽  
Hai Guo ◽  
Xiaopu Lyu ◽  
Beining Zhou ◽  
Zhenhao Ling ◽  
...  

2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2014 ◽  
Vol 14 (19) ◽  
pp. 10721-10730 ◽  
Author(s):  
L. Ran ◽  
W. L. Lin ◽  
Y. Z. Deji ◽  
B. La ◽  
P. M. Tsering ◽  
...  

Abstract. Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.


2017 ◽  
Vol 17 (18) ◽  
pp. 10919-10935 ◽  
Author(s):  
Yu Wang ◽  
Hao Wang ◽  
Hai Guo ◽  
Xiaopu Lyu ◽  
Hairong Cheng ◽  
...  

Abstract. Over the past 10 years (2005–2014), ground-level O3 in Hong Kong has consistently increased in all seasons except winter, despite the yearly reduction of its precursors, i.e. nitrogen oxides (NOx =  NO + NO2), total volatile organic compounds (TVOCs), and carbon monoxide (CO). To explain the contradictory phenomena, an observation-based box model (OBM) coupled with CB05 mechanism was applied in order to understand the influence of both locally produced O3 and regional transport. The simulation of locally produced O3 showed an increasing trend in spring, a decreasing trend in autumn, and no changes in summer and winter. The O3 increase in spring was caused by the net effect of more rapid decrease in NO titration and unchanged TVOC reactivity despite decreased TVOC mixing ratios, while the decreased local O3 formation in autumn was mainly due to the reduction of aromatic VOC mixing ratios and the TVOC reactivity and much slower decrease in NO titration. However, the decreased in situ O3 formation in autumn was overridden by the regional contribution, resulting in elevated O3 observations. Furthermore, the OBM-derived relative incremental reactivity indicated that the O3 formation was VOC-limited in all seasons, and that the long-term O3 formation was more sensitive to VOCs and less to NOx and CO in the past 10 years. In addition, the OBM results found that the contributions of aromatics to O3 formation decreased in all seasons of these years, particularly in autumn, probably due to the effective control of solvent-related sources. In contrast, the contributions of alkenes increased, suggesting a continuing need to reduce traffic emissions. The findings provide updated information on photochemical pollution and its impact in Hong Kong.


2014 ◽  
Vol 14 (18) ◽  
pp. 10061-10084 ◽  
Author(s):  
D. Liu ◽  
J. D. Allan ◽  
D. E. Young ◽  
H. Coe ◽  
D. Beddows ◽  
...  

Abstract. Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC–AMS–PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core – Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10%, respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W, SE and E air masses, the BCsf mass fractions ranged from 16 ± 6%, 24 ± 10% and 39 ± 14%, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC–AMS–PMF multiple linear regression method (BC–AMS–PMF : SP2 ratio = 1.05, r2 = 0.80) over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed absorption Ångström exponent (αwb) had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.


Sign in / Sign up

Export Citation Format

Share Document