scholarly journals Long term validation of ESA operational retrieval (version 6.0) of MIPAS Envisat vertical profiles of methane, nitrous oxides, CFC-11 and CFC-12 using balloon borne observations and trajectory matching

2015 ◽  
Vol 8 (7) ◽  
pp. 7455-7489
Author(s):  
A. Engel ◽  
H. Bönisch ◽  
T. Schwarzenberger ◽  
H. P. Haase ◽  
K. Grunow ◽  
...  

Abstract. MIPAS-Envisat is a satellite-borne sensor which was measuring vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation for the operational retrieval (version 6.0) of N2O, CH4, CFC-12 and CFC-11 by the European Space Agency (ESA) of MIPAS-Envisat. The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS as of early 2005. Retrieval results for N2O, CH4 and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. However, significant differences to the balloon data are also observed for some altitude regions, which depend on species and spectroscopic resolution. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios.

2016 ◽  
Vol 9 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Andreas Engel ◽  
Harald Bönisch ◽  
Tim Schwarzenberger ◽  
Hans-Peter Haase ◽  
Katja Grunow ◽  
...  

Abstract. MIPAS-Envisat is a satellite-borne sensor which measured vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation of the MIPAS-Envisat operational retrieval (version 6.0) of N2O, CH4, CFC-12, and CFC-11 by the European Space Agency (ESA). The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations, we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS in early 2005. Retrieval results for N2O, CH4, and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. The more recent low spectroscopic resolution data above 20 km altitude show agreement with the combined uncertainties, while there is a tendency of the earlier high spectral resolution data set to underestimate these species above 25 km. The earlier high spectral resolution data show a significant overestimation of the mixing ratios for N2O, CH4, and CFC-12 below 20 km. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6.0 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios at all altitudes.


2015 ◽  
Vol 8 (12) ◽  
pp. 5251-5261 ◽  
Author(s):  
A. Laeng ◽  
J. Plieninger ◽  
T. von Clarmann ◽  
U. Grabowski ◽  
G. Stiller ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is an infrared (IR) limb emission spectrometer on the Envisat platform. It measures trace gas distributions during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day−1. We present the results of a validation study of methane, version V5R_CH4_222, retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung, Karlsruhe/Instituto de Astrofisica de Andalucia, Grenada) MIPAS scientific level 2 processor. The level 1 spectra are provided by the ESA (European Space Agency) and version 5 was used. The time period covered is 2005–2012, which corresponds to the period when MIPAS measured trace gas distributions at a reduced spectral resolution of 0.0625 cm−1. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation measurements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, assessment of stability, precision validation, analysis of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3 % with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3 % with SCIAMACHY has been found. In the middle stratosphere, there is no clear indication of a MIPAS bias since comparisons with various instruments contradict each other. In the lower stratosphere (below 25 km) MIPAS CH4 is biased high with respect to satellite instruments, and the most likely estimate of this bias is 14 %. However, in the comparison with CH4 data obtained from cryogenic whole-air sampler (cryosampler) measurements, there is no evidence of a high bias in MIPAS between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS–MIPAS pairs and suggests a slight underestimation of its uncertainties by a factor of 1.2. No significant evidence of an instrumental drift has been found.


2013 ◽  
Vol 117 (1197) ◽  
pp. 1075-1101 ◽  
Author(s):  
S. M. Parkes ◽  
I. Martin ◽  
M. N. Dunstan ◽  
N. Rowell ◽  
O. Dubois-Matra ◽  
...  

Abstract The use of machine vision to guide robotic spacecraft is being considered for a wide range of missions, such as planetary approach and landing, asteroid and small body sampling operations and in-orbit rendezvous and docking. Numerical simulation plays an essential role in the development and testing of such systems, which in the context of vision-guidance means that realistic sequences of navigation images are required, together with knowledge of the ground-truth camera motion. Computer generated imagery (CGI) offers a variety of benefits over real images, such as availability, cost, flexibility and knowledge of the ground truth camera motion to high precision. However, standard CGI methods developed for terrestrial applications lack the realism, fidelity and performance required for engineering simulations. In this paper, we present the results of our ongoing work to develop a suitable CGI-based test environment for spacecraft vision guidance systems. We focus on the various issues involved with image simulation, including the selection of standard CGI techniques and the adaptations required for use in space applications. We also describe our approach to integration with high-fidelity end-to-end mission simulators, and summarise a variety of European Space Agency research and development projects that used our test environment.


2016 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOX (NO and NO2) and HOX (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOX and HOX are highly variable in space and time, and so the measurements of these species are of very limited value for examining long term, large scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the formation of which is dependent on the atmospheric NO / HO2 ratio. We derive long term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 4–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOX, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increase from around 1970 to the late 1990's consistent with large changes to the [NO] / [HO2] ratio in the northern hemisphere atmosphere during this period. These could represent historic changes to NOX sources and sinks. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.


1988 ◽  
Vol 123 ◽  
pp. 545-548
Author(s):  
V. Domingo

As a cornerstone of its long term plan for space science research, the European Space Agency (ESA) is developing the Solar Terrestrial Physics Programme that consists of two parts: one, the Solar and Heliospheric Observatory (SOHO) for the study of the solar internal structure and the physics of the solar corona and the solar wind, and another, CLUSTER, a series of four spacecraft flying in formation to study small scale plasma phenomena in several regions of the magnetosphere and in the near Earth solar wind. The feasibility of the missions was demonstrated in Phase A studies carried out by industrial consortia under the supervision of ESA (1,2). According to the current plans an announcement of opportunity calling for instrument proposals will be issued by ESA during the first quarter of 1987. It is foreseen that the spacecraft will be launched by the end of 1994.


2017 ◽  
Vol 17 (20) ◽  
pp. 12533-12552 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Erkki Kyrölä ◽  
Marko Laine ◽  
Johanna Tamminen ◽  
Doug Degenstein ◽  
...  

Abstract. In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling.


2017 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Erkki Kyrölä ◽  
Marko Laine ◽  
Johanna Tamminen ◽  
Doug Degenstein ◽  
...  

Abstract. In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and inter-compared; only those datasets, which are in good agreement and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE-CCI-OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE-CCI-OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at mid-latitudes in the upper stratosphere and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s.


2009 ◽  
Vol 4 (3) ◽  
pp. 4-16 ◽  
Author(s):  
Sergio Albani ◽  
David Giaretta

ESA-ESRIN, the European Space Agency Centre for Earth Observation (EO), is the largest European EO data provider and operates as the reference European centre for EO payload data exploitation. EO Space Missions provide global coverage of the Earth across both space and time generating on a routine continuous basis huge amounts of data (from a variety of sensors) that need to be acquired, processed, elaborated, appraised and archived by dedicated systems. Long-term Preservation of these data and of the ability to discover, access and process them is a fundamental issue and a major challenge at programmatic, technological and operational levels.Moreover these data are essential for scientists needing broad series of data covering long time periods and from many sources. They are used for many types of investigations including ones of international importance such as the study of the Global Change and the Global Monitoring for Environment and Security (GMES) Program. Therefore it is of primary importance not only to guarantee easy accessibility of historical data but also to ensure users are able to understand and use them; in fact data interpretation can be even more complicated given the fact that scientists may not have (or may not have access to) the right knowledge to interpret these data correctly.To satisfy these requirements, the European Space Agency (ESA), in addition to other internal initiatives, is participating in several EU-funded projects such as CASPAR (Cultural, Artistic, and Scientific knowledge for Preservation, Access and Retrieval), which is building a framework to support the end-to-end preservation lifecycle for digital information, based on the OAIS reference model, with a strong focus on the preservation of the knowledge associated with data.In the CASPAR Project ESA plays the role of both user and infrastructure provider for one of the scientific testbeds, putting into effect dedicated scenarios with the aim of validating the CASPAR solutions in the Earth Science domain. The other testbeds are in the domains of Cultural Heritage and of Contemporary Performing Arts; together they provide a severe test of preservation tools and techniques.In the context of the current ESA overall strategies carried out in collaboration with European EO data owners/providers, entities and institutions which have the objective of guaranteeing long-term preservation of EO data and knowledge, this paper will focus on the ESA participation and contribution to the CASPAR Project, describing in detail the implementation of the ESA scientific testbed.


2020 ◽  
Author(s):  
Wouter Dorigo ◽  
Wolfgang Preimesberger ◽  
Adam Pasik ◽  
Alexander Gruber ◽  
Leander Moesinger ◽  
...  

<p>As part of the European Space Agency (ESA) Climate Change Initiative (CCI) a more than 40 year long climate data record (CDR) is produced by systematically combining Level-2 datasets from separate missions. Combining multiple level 2 datasets into a single consistent long-term product combines the advantages of individual missions and allows deriving a harmonised long-term record with optimal spatial and temporal coverage. The current version of ESA CCI Soil Moisture includes a PASSIVE (radiometer-based) dataset covering the period 1978 to 2019, an ACTIVE (scatterometer-based) product covering the period 1991-2019 and a COMBINED product (1978-2019). </p><p>The European Commission’s Copernicus Climate Changes Service (C3S) uses the ESA CCI soil moisture algorithm to produce similar climate data records from near-real-time Level-2 data streams.  These products are continuously extended within 10 days after data acquisition and instantaneously made available through the C3S Climate Data Store. In addition to a daily product, monthly aggregates as well as a dekadal (10-days) products are produced.</p><p>In this presentation we give an overview of the latest developments of the ESA CCI and C3S Soil Moisture datasets, which include the integration of SMAP and various algorithmic updates, and use the datasets to assess the hydrological conditions of 2019 with respect to a 30-year historical baseline.</p><p>The development of the ESA CCI products has been supported by ESA’s Climate Change Initiative for Soil Moisture (Contract No. 4000104814/11/I-NB and 4000112226/14/I-NB). The Copernicus Climate Change Service (C3S) soil moisture product is funded by the Copernicus Climate Change Service implemented by ECMWF through C3S 312b Lot 7 Soil Moisture service.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 641 ◽  
Author(s):  
Joel Segarra ◽  
Maria Luisa Buchaillot ◽  
Jose Luis Araus ◽  
Shawn C. Kefauver

The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.


Sign in / Sign up

Export Citation Format

Share Document