scholarly journals Equinoctial asymmetry in solar activity variations of <I>Nm</I>F2 and TEC

2012 ◽  
Vol 30 (3) ◽  
pp. 613-622 ◽  
Author(s):  
Y. Chen ◽  
L. Liu ◽  
W. Wan ◽  
Z. Ren

Abstract. The ionosonde NmF2 data (covering several solar cycles) and the JPL TEC maps (from 1998 through 2009) were collected to investigate the equinoctial asymmetries in ionospheric electron density and its variation with solar activity. With solar activity increasing, the equinoctial asymmetry of noontime NmF2 increases at middle latitudes but decreases or changes little at low latitudes, while the equinoctial asymmetry of TEC increases at all latitudes. The latitudinal feature of the equinoctial asymmetry at high solar activity is different from that at low solar activity. The increases of NmF2 and TEC with the solar proxy P = (F10.7+F10.7A)/2 also show equinoctial asymmetries that depend on latitudes. The increase rate of NmF2 with P at March equinox (ME) is higher than that at September equinox (SE) at middle latitudes, but the latter is higher than the former at the EIA crest latitudes, and the difference between them is small at the EIA trough latitudes. The phenomenon of higher increase rate at SE than at ME does not appear in TEC. The increase rate of noontime TEC with P at ME is higher than that at SE at all latitudes, and the difference between them peaks at both sides of dip equator. It is mentionable that the equinoctial asymmetries of NmF2 and TEC increase rates present some longitudinal dependence at low latitude. The influences of equinoctial differences in the thermosphere and ionospheric dynamics processes on the equinoctial asymmetry of the electron density were briefly discussed.

2016 ◽  
Vol 34 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Yun-Liang Zhou ◽  
Li Wang ◽  
Chao Xiong ◽  
Hermann Lühr ◽  
Shu-Ying Ma

Abstract. In this paper we use more than a decade of in situ electron density observations from CHAMP and GRACE satellites to investigate the solar activity dependence of nonmigrating tides at both low and middle latitudes. The results indicate that the longitudinal patterns of F region electron density vary with season and latitude, which are exhibiting a wavenumber 4 (WN4) pattern around September equinox at low latitudes and WN1/WN2 patterns during local summer at the southern/northern middle latitudes. These wave patterns in the F region ionosphere can clearly be seen during both solar maximum and minimum years. At low latitudes the absolute amplitudes of DE3 (contributing to the WN4 pattern) are found to be highly related to the solar activity, showing larger amplitudes during solar maximum years. Similarly a solar activity dependence can also be found for the absolute amplitudes of D0, DW2 and DE1 (contributing to the WN1 and WN2 pattern) at middle latitudes. The relative amplitudes (normalized by the zonal mean) of these nonmigrating tides at both low and middle altitudes show little dependence on solar activity. We further found a clear modulation by the quasi-biennial oscillation (QBO) of the relative DE3 amplitudes in both satellite observations, which is consistent with the QBO dependence as reported for the E region temperatures and zonal wind. It also supports the strong coupling of the low-latitude nonmigrating tidal activity between the E and F regions. However, the QBO dependence cannot be found for the relative amplitudes of the nonmigrating tides at middle latitudes, which implies that these tides are generated in situ at F region altitudes.


2021 ◽  
Author(s):  
Fuqing Huang ◽  
Jiuhou Lei ◽  
Chao Xiong

&lt;p&gt;Equatorial plasma bubbles (EPBs) are typically ionospheric irregularities that frequently occur at the low latitudes and equatorial regions, which can significantly affect the propagation of radio waves. In this study, we reported a unique strong EPB that happened at middle latitudes over the Asian sector during the quiescent period. The multiple observations including total electron content (TEC) from Beidou geostationary satellites and GPS, ionosondes, in-situ electron density from SWARM and meteor radar are used to explore the characteristic and mechanism of the observed EPB. The unique strong EPB was associated with great nighttime TEC/electron density enhancement at the middle latitudes, which moves toward eastward. The potential physical processes of the observed EPB are also discussed.&lt;/p&gt;


2021 ◽  
Vol 13 (22) ◽  
pp. 4559
Author(s):  
Marjolijn Adolfs ◽  
Mohammed Mainul Hoque

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented here. The NWA is visible in the Northern Hemisphere for the American sector and in the Southern Hemisphere for the Asian longitude sector under solar minimum conditions. During the NWA, the mean ionization level is found to be higher in the winter nights compared to the summer nights. The approach proposed here is a fully connected neural network (NN) model trained with Global Ionosphere Maps (GIMs) data from the last two solar cycles. The day of year, universal time, geographic longitude, geomagnetic latitude, solar zenith angle, and solar activity proxy, F10.7, were used as the input parameters for the model. The model was tested with independent TEC datasets from the years 2015 and 2020, representing high solar activity (HSA) and low solar activity (LSA) conditions. Our investigation shows that the root mean squared (RMS) deviations are in the order of 6 and 2.5 TEC units during HSA and LSA period, respectively. Additionally, NN model results were compared with another model, the Neustrelitz TEC Model (NTCM). We found that the neural network model outperformed the NTCM by approximately 1 TEC unit. More importantly, the NN model can reproduce the evolution of the NWA effect during low solar activity, whereas the NTCM model cannot reproduce such effect in the TEC variation.


2010 ◽  
Vol 28 (6) ◽  
pp. 1263-1271 ◽  
Author(s):  
G. J. Wang ◽  
J. K. Shi ◽  
X. Wang ◽  
S. P. Shang ◽  
G. Zherebtsov ◽  
...  

Abstract. The temporal variations of the low latitude nighttime spread F (SF) observed by DPS-4 digisonde at low latitude Hainan station (geog. 19.5° N, 109.1° E, dip lat. 9.5° N) during the declining solar cycle 23 from March 2002 to February 2008 are studied. The spread F measured by the digisonde were classified into four types, i.e., frequency SF (FSF), range SF (RSF), mixed SF (MSF), and strong range SF (SSF). The statistical results show that MSF and SSF are the outstanding irregularities in Hainan, MSF mainly occurs during summer and low solar activity years, whereas SSF mainly occurs during equinoxes and high solar activity years. The SSF has a diurnal peak before midnight and usually appears during 20:00–02:00 LT, whereas MSF peaks nearly or after midnight and occurs during 22:00–06:00 LT. The time of maximum occurrence of SSF is later in summer than in equinoxes and this time delay can be caused by the later reversal time of the E×B drift in summer. The SunSpot Number (SSN) dependence of each type SF is different during different season. The FSF is independent of SSN during each season; RSF with SSN is positive relation during equinoxes and summer and is no relationship during the winter; MSF is significant dependence on SSN during the summer and winter, and does not relate to SSN during the equinoxes; SSF is clearly increasing with SSN during equinoxes and summer, while it is independent of SSN during the winter. The occurrence numbers of each type SF and total SF have the same trend, i.e., increasing as Kp increases from 0 to 1, and then decreasing as increasing Kp. The correlation with Kp is negative for RSF, MSF, SSF and total SF, but is vague for the FSF.


1991 ◽  
Vol 9 (2) ◽  
pp. 330-331 ◽  
Author(s):  
J. O. Murphy

AbstractThe atmospheric 14C record, the corresponding WM values derived from a carbon reservoir model, auroral numbers and the Zurich relative annual sunspot numbers all demonstrate a substantial downturn in solar activity for the duration of solar cycles 5 and 6. This reduction is also imbedded in some dendrochronological proxy data sets, which describe an annual index radial growth rate for trees at high-altitude sites. A significant lagged correlation can exist between tree-ring indices and the 11–year solar cycle during periods of high solar activity, a feature which is not evident during quiescent periods.


2011 ◽  
Vol 29 (5) ◽  
pp. 865-873 ◽  
Author(s):  
M. P. Natali ◽  
A. Meza

Abstract. Annual, semiannual and seasonal variations of the Vertical Total Electron Content (VTEC) have been investigated during high solar activity in 2000. In this work we use Global IGS VTEC maps and Principal Component Analysis to study spatial and temporal ionospheric variability. The behavior of VTEC variations at two-hour periods, at noon and at night is analyzed. Particular characteristics associated with each period and the geomagnetic regions are highlighted. The variations at night are smaller than those obtained at noon. At noon it is possible to see patterns of the seasonal variation at high latitude, and patterns of the semiannual anomaly at low latitudes with a slow decrease towards mid latitudes. At night there is no evidence of seasonal or annual anomaly for any region, but it was possible to see the semiannual anomaly at low latitudes with a sudden decrease towards mid latitudes. In general, the semiannual behavior shows March–April equinox at least 40 % higher than September one. Similarities and differences are analyzed also with regard to the same analysis done for a period of low solar activity.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1526
Author(s):  
Chen-Ke-Min Teng ◽  
Sheng-Yang Gu ◽  
Yusong Qin ◽  
Xiankang Dou

In this study, a global atmospheric model, Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X), and the residual circulation principle were used to study the global atmospheric circulation from the lower to upper atmosphere (~500 km) from 2002 to 2019. Our analysis shows that the atmospheric circulation is clearly influenced by solar activity, especially in the upper atmosphere, which is mainly characterized by an enhanced atmospheric circulation in years with high solar activity. The atmospheric circulation in the upper atmosphere also exhibits an ~11 year period, and its variation is highly correlated with the temporal variation in the F10.7 solar index during the same time series, with a maximum correlation coefficient of up to more than 0.9. In the middle and lower atmosphere, the impact of solar activity on the atmospheric circulation is not as obvious as in the upper atmosphere due to some atmospheric activities such as the Quasi-Biennial Oscillation (QBO), El Niño–Southern Oscillation (ENSO), sudden stratospheric warming (SSW), volcanic forcing, and so on. By comparing the atmospheric circulation in different latitudinal regions between years with high and low solar activity, we found the atmospheric circulation in mid- and high-latitude regions is more affected by solar activity than in low-latitude and equatorial regions. In addition, clear seasonal variation in atmospheric circulation was detected in the global atmosphere, excluding the regions near 10−4 hPa and the lower atmosphere, which is mainly characterized by a flow from the summer hemisphere to the winter hemisphere. In the middle and low atmosphere, the atmospheric circulation shows a quasi-biennial oscillatory variation in the low-latitude and equatorial regions. This work provides a referable study of global atmospheric circulation and demonstrates the impacts of solar activity on global atmospheric circulation.


2021 ◽  
Vol 13 (18) ◽  
pp. 3552
Author(s):  
Beata Milanowska ◽  
Paweł Wielgosz ◽  
Anna Krypiak-Gregorczyk ◽  
Wojciech Jarmołowski

Global ionosphere maps (GIMs) representing ionospheric total electron content (TEC) are applicable in many scientific and engineering applications. However, the GIMs provided by seven Ionosphere Associated Analysis Centers (IAACs) are generated with different temporal resolutions and using different modeling techniques. In this study, we focused on the influence of map time interval on the empirical accuracy of these ionospheric products. We investigated performance of the high-resolution GIMs during high (2014) and low (2018) solar activity periods as well as under geomagnetic storms (19 February 2014 and 17 March 2015). In each of the analyzed periods, GIMs were also assessed over different geomagnetic latitudes. For the evaluation, we used direct comparison of GIM-derived slant TEC (STEC) with dual-frequency GNSS observations obtained from 18 globally distributed stations. In order to perform a comprehensive study, we also evaluated GIMs with respect to altimetry-derived vertical TEC (VTEC) obtained from the Jason-2 and Jason-3 satellites. The study confirmed the influence of GIMs time interval on the provided TEC accuracy, which was particularly evident during high solar activity, geomagnetic storms, and also at low latitudes. The results show that 120-min interval contributes significantly to the accuracy degradation, whereas 60-min one is sufficient to maintain TEC accuracy.


Sign in / Sign up

Export Citation Format

Share Document