scholarly journals Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25

2014 ◽  
Vol 32 (8) ◽  
pp. 1035-1042 ◽  
Author(s):  
A. Yoshida

Abstract. It was shown previously that the sunspot number (SSN) at a point 3 years before the minimum is well correlated with the maximum SSN of the succeeding cycle, and a better correlation is obtained when the maximum SSN is replaced by the average SSN over a cycle for which the average SSN is calculated by dividing cycles at a point 3 years before the minimum (Yoshida and Yamagishi, 2010; Yoshida and Sayre, 2012). Following these findings, we demonstrate in this paper that the correlation between the SSN 3 years before the minimum and the amplitude of the coming cycle differs significantly between even-numbered and odd-numbered cycles: the correlation is much better for even-numbered cycles. Further, it is shown that the amplitude of even-numbered cycles is strongly correlated with that of the succeeding odd-numbered cycles, while the correlation between amplitudes of odd-numbered cycles and those of succeeding even-numbered cycles is very poor. Using the excellent correlations, we estimate the maximum SSN of the current cycle 24 at 81.3 and predict the maximum SSN of cycle 25 to be 115.4 ± 11.9. It is of note, however, that a peak of the SSN has been observed in February 2012 and the peak value 66.9 is considerably smaller than the estimated maximum SSN of cycle 24. We conjecture that the second higher peak of the SSN may appear.

2014 ◽  
Vol 4 (2) ◽  
pp. 477-483
Author(s):  
Debojyoti Halder

Sunspots are temporary phenomena on the photosphere of the Sun which appear visibly as dark spots compared to surrounding regions. Sunspot populations usually rise fast but fall more slowly when observed for any particular solar cycle. The sunspot numbers for the current cycle 24 and the previous three cycles have been plotted for duration of first four years for each of them. It appears that the value of peak sunspot number for solar cycle 24 is smaller than the three preceding cycles. When regression analysis is made it exhibits a trend of slow rising phase of the cycle 24 compared to previous three cycles. Our analysis further shows that cycle 24 is approaching to a longer-period but with smaller occurrences of sunspot number.


2021 ◽  
Vol 19 (8) ◽  
pp. 157-168
Author(s):  
Wafaa H.A. Zaki

The ionosphere layer (F2) is known as the most important layer for High frequency (Hf) radio communication because it is a permanent layer and excited during the day and night so it is able to reflect the frequencies at night and day due to its high critical frequency, and this layer is affected by daily and monthly solar activity. In this study the characteristics and behavior of F2 layer during Solar cycle 24 were studied, the effect of Sunspots number (Ri) on the critical frequency (foF2), were investigated for the years (2015, 2016, 2017, 2018, 2019, 2020) which represents the down phase of the solar cycle 24 over Erbil station (36° N, 44° E) by finding the critical frequency (foF2) values, the layer’ s impression times are determined for the days of solstice as well as equinox, where the solar activity was examined for the days of the winter and summer solstice and the days of the spring and autumn equinoxes for a period of 24 hours by applied the International Reference Ionosphere model IRI (2016). The output data for foF2 were verified by using the IRI-Ne- Quick option by specifying the time, date and Sunspot number parameters. Statistical analysis was caried out through the application of the Minitab (version 2018) in order to find the correlation between the critical frequency (foF2) of Ionospheric layer F2 and Sunspot number. It was concluded that the correlation is strong and positive, this indicate that critical frequency (foF2) increase with increasing Sunspots number (Ri) for solar cycle 24.


2018 ◽  
Vol 13 (S340) ◽  
pp. 321-322
Author(s):  
Volkan Sarp ◽  
Ali Kılçık

AbstractSolar activity is a chaotic process and there are various approximations to forecast its long term and short term variations. But there is no prediction method that predicts the solar activity exactly. In this study, a nonlinear prediction approach was applied to international sunspot numbers and performance of predictions was tested for the last 5 solar cycles. These predictions are in good agreement with observed values of the tested solar cycles. According to these results, end of cycle 24 is expected at February, 2020 with 7.7 smoothed monthly mean sunspot number and maximum of cyle 25 is expected at May, 2024 with 119.6 smoothed monthly mean sunspot number.


1970 ◽  
Vol 11 (2) ◽  
pp. 276-300
Author(s):  
Msganaw Aragaw ◽  
Abraha Gebiregiorgis ◽  
Kassa Tsegaye

Ionospheric GPS total electron content (TEC) is an important parameter to monitor for possible Space Weather impacts. The effects of solar activity on TEC at low latitude stations with geographic locations (latitude, longitude) of Addis Ababa (9.040 N, 38.770 E) and Bahir Dar (11.60 N, 37.360 E) in Ethiopia, East Africa in the year of 2015 around peak of solar cycle 24 has been carried out. The data from the two stations was used to study the diurnal, monthly and seasonal variations of TEC and its dependence with solar activity and space weather effects. These observations were investigated and further discussed with an analysis of Disturbance Storm Time (Dst) and Ap indices, solar radio flux (F10.7cm) and sunspot number during the period of 2015. During the period of low or high sunspot number, that provided GPS ionospheric TEC builds up slowly or quickly. The obtained results reveal TEC undergoes diurnal and seasonal variations, daily variation of TEC value at both stations sharply increases to its peak from 0900 -1500 UT and decreases around 1600 - 0700 UT. Seasonal variations showed that TEC maximizes during the equinoctial months and least in summer over the two stations. In all seasons the maximum value of TEC in Addis Ababa is higher. The effects of geomagnetic storms on TEC values have been found negative and positive output.  


Author(s):  
Frédéric Clette

The F 10.7cm radio flux and the Sunspot Number are the most widely used long-term indices of solar activity. They are strongly correlated, which led to the publication of many proxy relations allowing to convert one index onto the other. However, those existing proxies show significant disagreements, in particular at low solar activity. Moreover, a temporal drift was recently found in the relative scale of those two solar indices. Our aim is to bring a global clarification of those many issues. We compute new polynomial regressions up to degree 4, in order to obtain a more accurate proxy over the whole range of solar activity. We also study the role of temporal averaging on the regression, and we investigate the issue of the all-quiet F 10.7 background flux. Finally, we check for any change in the quiet-Sun F 10.7 - sunspot number relation over the entire period 1947--2015. We find that, with a 4 th -degree polynomial, we obtain a more accurate proxy relation than all previous published ones, and we derive a formula giving standard errors. The relation is different for daily, monthly and yearly mean values, and it proves to be fully linear for raw non-averaged daily data. By a simple two-component model for daily values, we show how temporal averaging leads to non-linear proxy relations. We also show that the F 10.7 background is not absolute and actually depends on the duration of the spotless periods. Finally, we find that the F 10.7cm time series is inhomogeneous, with an abrupt 10.5% upward jump occurring between 1980 and 1981, and splitting the series in two stable intervals. Our new proxy relations bring a strong improvement and show the importance of  temporal scale for choosing the appropriate proxy and the F 10.7 quiet-Sun background level. From historical evidence, we conclude that the 1981 jump is most likely due to a unique change in the F 10.7 scientific team and the data processing, and that the newly re-calibrated sunspot number (version 2) will probably provide the only possible reference to correct this inhomogeneity.


2009 ◽  
Vol 5 (S264) ◽  
pp. 202-209 ◽  
Author(s):  
Irina N. Kitiashvili ◽  
Alexander G. Kosovichev

AbstractSolar activity is a determining factor for space climate of the Solar system. Thus, predicting the magnetic activity of the Sun is very important. However, our incomplete knowledge about the dynamo processes of generation and transport of magnetic fields inside Sun does not allow us to make an accurate forecast. For predicting the solar cycle properties use the Ensemble Kalman Filter (EnKF) to assimilate the sunspot data into a simple dynamo model. This method takes into account uncertainties of both the dynamo model and the observed sunspot number series. The method has been tested by calculating predictions of the past cycles using the observed annual sunspot numbers only until the start of these cycles, and showed a reasonable agreement between the predicted and actual data. After this, we have calculated a prediction for the upcoming solar cycle 24, and found that it will be approximately 30% weaker than the previous one, confirming some previous expectations. In addition, we have investigated the properties of the dynamo model during the solar minima, and their relationship to the strength of the following solar cycles. The results show that prior the weak cycles, 20 and 23, and the upcoming cycle, 24, the vector-potential of the poloidal component of magnetic field and the magnetic helicity substantial decrease. The decrease of the poloidal field corresponds to the well-known correlation between the polar magnetic field strength at the minimum and the sunspot number at the maximum. However, the correlation between the magnetic helicity and the future cycle strength is new, and should be further investigated.


2021 ◽  
Author(s):  
Leif Svalgaard

<p>The long-standing disparity between the sunspot number record and the Hoyt and Schatten (1998, H&S) Group Sunspot Number series was initially resolved by the Clette et al. (2014) revision of the sunspot number and the group number series. The revisions resulted in a flurry of dissenting group number series while the revised sunspot number series was generally accepted. Thus, the disparity persisted and confusion reigned, with the choice of solar activity dataset continuing to be a free parameter. A number of workshops and follow-up collaborative efforts by the community have not yet brought clarity. We review here several lines of evidence that validate the original revisions put forward by Clette et al. (2014) and suggest that the perceived conundrum no longer need to delay acceptance and general use of the revised series. We argue that the solar observations constitute several distinct populations with different properties which explain the various discontinuities in the series. This is supported by several proxies: diurnal variation of the geomagnetic field, geomagnetic signature of the strength of the heliomagnetic field, and variation of radionuclides. The Waldmeier effect shows that the sunspot number scale has not changed over the last 270 years and a mistaken scale factor between observers Wolf and Wolfer explains the disparity beginning in 1882 between the sunspot number and the H&S reconstruction of the group number. Observations with replica of 18th century telescopes (with similar optical flaws) validate the early sunspot number scale; while a reconstruction of the group number with monthly resolution (with many more degrees of freedom) validate the size of Solar Cycle 11 given by the revised series that the dissenting series fail to meet. Based on the evidence at hand, we urge the working groups tasked with producing community-vetted and agreed upon solar activity series to complete their work expeditiously.</p>


2020 ◽  
Vol 6 (3) ◽  
pp. 81-85
Author(s):  
Aleksandr Mikhalev

In the paper, variations of the night emission intensities in the 557.7 and 630 nm atomic oxygen lines [OI] in 2011–2019 have been analyzed. The analysis is based on data from the ISTP SB RAS Geophysical Observatory. The emission intensities are compared with atmospheric, solar, and geophysical parameters. High correlation coefficients between monthly average and annual average 630.0 nm emission intensities and solar activity indices F10.7 have been obtained. This suggests a key role of solar activity in variations of this emission in the period of interest. Variations of the 557.7 nm emission demonstrate to a greater extent the correlations of the stratospheric zonal wind (QBO.U30 index) with quasi-biennial oscillations. The causes of the weak dependence of the 557.7 nm emission intensity on solar activity in solar cycle 24 are discussed.


2021 ◽  
Author(s):  
Yasmina Bouderba ◽  
Ener Aganou ◽  
Abdenaceur Lemgharbi

<p>In this work we will show the behavior of the horizontal component H of the Earth Magnetic Field (EMF) along the seasons during the period of solar cycle 24 lasting from 2009 to 2019. By means of  continuous measurements of geomagnetic components (X, Y) of the EMF, we compute the horizontal component H at the Earth’s surface. The data are recorded with a time resolution of one minute at Tamanrasset observatory in Algeria at the geographical coordinates of 22.79° North and 5.53° East. These data are available from the INTERMAGNET network. We find that the variation in amplitude of the hourly average of H component at low latitude changes from a season to another and it is greater at the maximum solar activity than at the minimum solar activity.</p><p><strong>Keywords:</strong> Solar cycle 24, Season, Horizontal component H. </p>


2021 ◽  
Vol 44 ◽  
pp. 100-106
Author(s):  
A.K. Singh ◽  
◽  
A. Bhargawa ◽  

Solar-terrestrial environment is manifested primarily by the physical conditions of solar interior, solar atmosphere and eruptive solar plasma. Each parameter gives unique information about the Sun and its activity according to its defined characteristics. Hence the variability of solar parameters is of interest from the point of view of plasma dynamics on the Sun and in the interplanetary space as well as for the solar-terrestrial physics. In this study, we have analysed various solar transients and parameters to establish the recent trends of solar activity during solar cycles 21, 22, 23 and 24. The correlation coefficients of linear regression of F10.7 cm index, Lyman alpha index, Mg II index, cosmic ray intensity, number of M & X class flares and coronal mass ejections (CMEs) occurrence rate versus sunspot number was examined for last four solar cycles. A running cross-correlation method has been used to study the momentary relationship among the above mentioned solar activity parameters. Solar cycle 21 witnessed the highest value of correlation for F10.7 cm index, Lyman alpha index and number of M-class and X-class flares versus sunspot number among all the considered solar cycles which were 0.979, 0.935 and 0.964 respectively. Solar cycle 22 recorded the highest correlation in case of Mg II index, Ap index and CMEs occurrence rate versus sunspot number among all the considered solar cycles (0.964, 0.384 and 0.972 respectively). Solar cycle 23 and 24 did not witness any highest correlation compared to solar cycle 21 and 22. Further the record values (highest value compared to other solar three cycles) of each solar activity parameters for each of the four solar cycles have been studied. Here solar cycle 24 has no record text at all, this simply indicating that this cycle was a weakest cycle compared to the three previous ones. We have concluded that in every domain solar 24 was weaker to its three predecessors.


Sign in / Sign up

Export Citation Format

Share Document