scholarly journals Cosmic ray particles from exploding massive stars with winds

2014 ◽  
Vol 1 ◽  
pp. 29-31 ◽  
Author(s):  
P. L. Biermann

Abstract. The origin of cosmic rays is still unsettled. Many sources have been proposed over the years, and exploding stars still provide the most promising candidates. Here we examine one of these scenarios, and compare the resulting predictions with data: Massive stars have winds, and when these stars explode, the resulting shock runs through the wind. The observable phenomenon is called radio-supernova, and many have been observed in non-thermal radio emission. This emission allows to determine the magnetic field in the wind as a function of radius, and so allows to check, whether such explosions can achieve the high energies required and also explain the flux and the spectra of cosmic rays. The observations show this to be the case, and so we conclude that radio supernovae can explain the high-energy Galactic cosmic rays over the entire energy range, and that the spectral predictions are compatible with observations.

1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 48 ◽  
Author(s):  
Peter L. Biermann ◽  
Philipp P. Kronberg ◽  
Michael L. Allen ◽  
Athina Meli ◽  
Eun-Suk Seo

We propose that the high energy Cosmic Ray particles up to the upturn commonly called the ankle, from around the spectral turn-down commonly called the knee, mostly come from Blue Supergiant star explosions. At the upturn, i.e., the ankle, Cosmic Rays probably switch to another source class, most likely extragalactic sources. To show this we recently compiled a set of Radio Supernova data where we compute the magnetic field, shock speed and shock radius. This list included both Blue and Red Supergiant star explosions; both data show the same magnetic field strength for these two classes of stars despite very different wind densities and velocities. Using particle acceleration theory at shocks, those numbers can be transformed into characteristic ankle and knee energies. Without adjusting any free parameters both of these observed energies are directly indicated by the supernova data. In the next step in the argument, we use the Supernova Remnant data of the starburst galaxy M82. We apply this analysis to Blue Supergiant star explosions: The shock will race to their outer edge with a magnetic field that is observed to follow over several orders of magnitude B ( r ) × r ∼ c o n s t . , with in fact the same magnetic field strength for such stellar explosions in our Galaxy, and other galaxies including M82. The speed is observed to be ∼0.1 c out to about 10 16 cm radius in the plasma wind. The Supernova shock can run through the entire magnetic plasma wind region at full speed all the way out to the wind-shell, which is of order parsec scale in M82. We compare and identify the Cosmic Ray spectrum in other galaxies, in the starburst galaxy M82 and in our Galaxy with each other; we suggest how Blue Supergiant star explosions can provide the Cosmic Ray particles across the knee and up to the ankle energy range. The data from the ISS-CREAM (Cosmic Ray Energetics and Mass Experiment at the International Space Station) mission will test this cosmic ray concept which is reasonably well grounded in two independent radio supernova data sets. The next step in developing our understanding will be to obtain future more accurate Cosmic Ray data near to the knee, and to use unstable isotopes of Cosmic Ray nuclei at high energy to probe the “piston” driving the explosion. We plan to incorporate these data with the physics of the budding black hole which is probably forming in each of these stars.


1994 ◽  
Vol 142 ◽  
pp. 926-936
Author(s):  
Reinhard Schlickeiser

AbstractWe review the transport and acceleration of cosmic rays concentrating on the origin of galactic cosmic rays. Quasi-linear theory for the acceleration rates and propagation parameters of charged test particles combined with the plasma wave viewpoint of modeling weak cosmic electromagnetic turbulence provides a qualitatively and quantitatively correct description of key observations. Incorporating finite frequency effects, dispersion, and damping of the plasma waves are essential in overcoming classical discrepancies with observations as the Kfit - Kql discrepancy of solar particle events. We show that the diffusion-convection transport equation in its general form contains spatial convection and diffusion terms as well as momentum convection and diffusion terms. In particular, the latter momentum diffusion term plays a decisive role in the acceleration of cosmic rays at super-Alfvénic supernova shock fronts, and in the acceleration of ultra-high-energy cosmic rays by distributed acceleration in our own galaxy.Subject headings: acceleration of particles — convection — cosmic rays — diffusion — shock waves


1974 ◽  
Vol 64 ◽  
pp. 182-182
Author(s):  
W. David Arnett

Explosions of massive stars (8 ≲ M/M⊙ ≲ 70) are examined as the source of galactic cosmic rays. Detailed nucleosynthetic and evolutionary calculations suggest that these massive stars produce the heavy elements (carbon and above) in their proper relative abundances. This is particularly significant because lower mass stars (in particular the 4–8 M⊙ range) are not able to produce the observed abundances of C and O relative to the iron peak. A small (~ 1.4 M⊙) dense remnant star (a neutron star) left after the explosion may provide a location for an electromagnetic acceleration mechanism. Those abundance ratios which can now be predicted (He, C, O, Ne, Mg) for the material to be accelerated by the pulsar give a reasonable match to the observed cosmic ray data. The conditions at the outer edge of the remnant and the inner edge of the ejected material may be appropriate for an r-process to occur; the high Z cosmic rays seem to show an enrichment of r-process material. It appears that these stars may be the astrophysical source for the galactic cosmic rays. The questions of rotation and black hole formation were discussed. It appears that the most straight-forward result of evolution of a close massive binary is a massive star and a neutron star in a low eccentricity orbit, in agreement with observation.


2019 ◽  
Vol 208 ◽  
pp. 03005
Author(s):  
Eduardo de la Fuente ◽  
Juan Carlos Díaz–Vélez ◽  
Paolo Desiati ◽  
Jose Luis García–Luna ◽  
Janet Torrealba ◽  
...  

The detection of astroparticles, specially at high energies (>100 GeV), requires special techniques and instruments (telescopes or observatories), for example, those that use the Water Cherenkov radiation technique. In this paper we show an example of how Information Technologies can be used to perform maps and produce high impact results. The latter case is illustrated in the summary of the generation of a high statistics map of cosmic rays at 10 TeV in the northern sky with data collected by the High Altitude Water Cherenkov (HAWC) observatory.


2011 ◽  
Vol 26 (05) ◽  
pp. 911-923 ◽  
Author(s):  
HIDEYOSHI ARAKIDA ◽  
SHUICHI KURAMATA

We phenomenologically developed a propagation model of high energy galactic cosmic rays. We derived the analytical solutions by adopting the semi-empirical diffusion equation, proposed by Berezinskii et al. (1990) and the diffusion tensor proposed by Ptuskin et al. (1993). This model takes into account both the symmetric diffusion and the antisymmetric diffusion due to the particle Hall drift. Our solutions are an extension of the model developed by Ptuskin et al. to a two-dimensional two-layer (galactic disk and halo) model, and they coincide completely with the solution derived by Berezinskii et al. in the absence of antisymmetric diffusion due to Hall drift. We showed that this relatively simple toy model can be used to explain the variation in the exponent of the cosmic ray energy spectrum, γ, around the knee E ≈1015 eV .


2009 ◽  
Vol 18 (10) ◽  
pp. 1577-1581 ◽  
Author(s):  
P. L. BIERMANN ◽  
J. K. BECKER ◽  
L. CARAMETE ◽  
L. GERGELY ◽  
I. C. MARIŞ ◽  
...  

Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.


1981 ◽  
Vol 94 ◽  
pp. 93-106
Author(s):  
R. Cowsik

Propagation of cosmic rays is discussed with the intent of deriving results relevent to the origin of cosmic rays. Starting from a brief description of the methods for demodulating the effects of the solar wind on the spectra of particles, we describe an accurate method for correcting for spallation effects on the cosmic-ray nuclei during their transport from the sources subsequent to their acceleration. We present the composition of cosmic rays at the sources and discuss its implications to their origin. We discuss briefly the effects of stochastic acceleration in the interstellar medium on the relative spectra of primaries and secondaries in cosmic rays and show that the observation of decreasing relative abundance of secondaries with increasing energy rules out such phenomena for galactic cosmic rays. The spectrum of cosmic-ray electrons is discussed in terms of contributions from a discrete set of sources situated at various distances from the solar system on the galactic plane. We show that unless there are at least 3.104 sources actively accelerating cosmis rays in the Galaxy the spectrum of electrons would have a premature cut-off at high energies. Finally we point out some important questions that need to be clearly resolved for making further progress in the field.


1987 ◽  
Vol 125 ◽  
pp. 554-554
Author(s):  
Shigeki Miyaji

Cosmic ray spectrum has an intensity enhancement at energy range 1014–16 eV/nuc. Recently Takahasi et al. (1986) called an attention to chemical composition there. Although the data still contain large uncertainties, they argued an overabundance of calcium at high energies (Ca/Fe ≥ 2 above 1014 eV/nucleus) and some enhancements of medium heavy nuclei (C ∼ Ar) instead of no anomalous p, He, and Fe abundances.


2019 ◽  
Vol 209 ◽  
pp. 01041
Author(s):  
Margherita Di Santo

DAMPE (DArk Matter Particle Explorer) is a space mission project promoted by the Chinese Academy of Sciences (CAS), in collaboration with Universities and Institutes from China, Italy and Switzerland. The detector is collecting data in a stable sun-synchronous orbit lasting 95 minutes at an altitude of about 500 km. It has been launched in December 17th, 2015, from the Jiuquan Satellite Launch Center, in the Gobi Desert. The main goals of the mission are: indirect search for Dark Matter, looking for signatures in the electron and photon spectra with energies up to 10 TeV; analysis of the flux and composition of primary Cosmic Rays with energies up to hundreds of TeV; high energy gamma-ray astronomy. Preliminary results about the Helium flux and Cosmic Ray composition will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document